4 votos

Evaluación de integrales exponenciales especiales.

Estoy tratando de demostrar que

$$\int_{\mathbb{R}} x e^{-x} \cdot e^{-e^{-x}-x} = 1 - \gamma$ $ y

PS

He intentado atacar la integral usando todas las leyes de cálculo posibles, pero no me lleva a ninguna parte. Hemos derivado que $$\int_{\mathbb{R}} x^2 e^{-x} \cdot e^{-e^{-x}-x} = \pi^2/6 - 2\gamma + \gamma^2$

4voto

aleden Puntos 1

$$I(n)=\int_{-\infty}^\infty x^{n} e^{-x} e^{-e^{-x}-x}dx$$ Let $u=e^{-x}$, $x=-\ln(u)$, $du=-e^{-x}dx$ $$I(n)=-\int_\infty^0 (-\ln(u))^{n} ue^{-u}du=(-1)^n \int_0^\infty \ln^n(u)u e^{-u}du$$

Ahora la función Gamma se define como $$\Gamma(s)=\int_0^\infty x^{s-1}e^{-x}dx$$ So $$\left(\frac{d}{ds}\right)^n\Gamma(s)=\int_0^\infty \ln^n(x) x^{s-1} e^{-x}dx$$ Thus $$I(n)=(-1)^n \left(\frac{d}{ds}\right)^n\Gamma(s)|_{s=2}$$ Ahora vamos a $n=1,2$ para obtener los valores de los dos originales de las integrales. Podría ayudar a saber que $$\Gamma'(2)=-\gamma+H_1=1-\gamma$$ and that $$\psi_1(2)=\frac{\pi^2}{6}-1$$ where $\psi_1(s)$ es el Trigamma Función.

EDITAR: $$\psi_1(s)=\left(\frac{d}{ds}\right)^2 \ln(\Gamma(s))=\frac{\Gamma(s)\Gamma''(s)-\left(\Gamma'(s)\right)^2}{\Gamma^2(s)}$$ Evaluating at $s=2$ we get $$\Gamma''(2)-\left(\Gamma'(2)\right)^2=\frac{\pi^2}{6}-1$$ So $$\Gamma''(2)=\frac{\pi^2}{6}-1 +\left(\Gamma'(2)\right)^2=\frac{\pi^2}{6}-1 +(1-\gamma)^2=\frac{\pi^2}{6}-2\gamma+\gamma^2$$

1voto

matthias.lukaszek Puntos 1307

Lo que he hecho hasta ahora es:

Primera integral Denotar $u(x) = xe^{-x}$ e $f(x) := e^{-e^{-x}-x}$, vamos a $F(x)$ ser la antiderivada de $f(x)$. Entonces \begin{align*} \int_{\mathbb{R}} x e^{-x} \cdot e^{-e^{-x}-x} &= \int_{\mathbb{R}} u(x)f(x) \end{align*} Intergration por partes de los rendimientos \begin{align*} \hspace{1cm} &= - \int_{\mathbb{R}} u'(x)F(x) \end{align*} Tenemos $u'(x) = e^{-x} - u(x)$; por lo tanto, \begin{align*} \hspace{3.5cm} &= - \int_{\mathbb{R}} [e^{-x} - u(x)]F(x)\\ &= - \int_{\mathbb{R}} e^{-x} F(x) + \int_{\mathbb{R}} u(x)F(x) \end{align*} En la última nota que $f(x) = e^{-x}F(x)$; por lo tanto \begin{align*} \hspace{2cm} &= - \int_{\mathbb{R}} f(x) + \int_{\mathbb{R}} xf(x)\\ &= - 1 + \gamma \end{align*}

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X