Queremos encontrar la transformación de la función theta$$\theta_{E_8}(\tau) = \sum_{\tau \in \Gamma_8} q^{\lambda^2/2}, \quad q = e^{2\pi i\tau},$$under modular transformations. Under $\tau \a \tau + 1$, $p^{\lambda^2/2} \p^{\lambda^2/2} e^{\pi i\lambda^2}$. Let us classify the possible $\lambda^2$ for $\lambda \en \Gamma_8$, by writing $\lambda_i = \alpha_i/2$ with all $\alpha_i$ either odd or even:$$\lambda^2 = \sum_{i = 1}^8 \lambda_i^2 = {1\over4}\sum_{i = 1}^8 \alpha_i^2.$$If all $\alpha_i$ are odd, $\alpha_i^2 \equiv 1 \text{ mod }8$, so $\sum_i \alpha_i^2 \equiv 0 \text{ mod }8$ and $\lambda^2 \equiv 0 \text{ mod }2$. If all $\alpha_i$ are even, we have$$\alpha_i \equiv 2 \text{ mod }4 \implies \alpha_i^2 \equiv 4 \text{ mod }8,$$$$\alpha_i \equiv 0 \text{ mod }4 \implica \alpha_i^2 \equiv 0 \text{ mod }8.$$Since the sum is an even integer, we have an even number of $\alpha_i \equiv 2 \text{ mod }4$, so again $\sum_i \alpha_i^2 \equiv 0 \text{ mod }8$ and $\lambda^2 \equiv 0 \text{ mod }2$. Hence, $e^{\pi i\lambda^2} = 1$ and $q^{\lambda^2/2} \p^{\lambda^2/2}$, so $\theta_{E_8}$ es invariante.
Vamos ahora a encontrar el doble de celosía a $\Lambda_8$. Para ello, es útil escribir un base para $\Lambda_8$. Vamos a utilizar como base$$B = \left\{e_1 - e_2, e_2 - e_3, e_3 - e_4, e_4 - e_5, e_5 - e_6, e_6 - e_7, 2e_1, {1\over2}(e_1 + \ldots + e_8)\right\}.$$We might be tempted to include $e_7 - e_8$, but we can check that we can express it as a linear combination of elements from this basis. Then by going through each element in the basis, $\kappa \en \Gamma_8^*$ must have:\begin{align*} \kappa_i - \kappa_j \in \mathbb{Z} & \implies \kappa_i \equiv \kappa_j \text{ mod }1,\\ 2\kappa_1 \in \mathbb{Z} & \implies \kappa_i \equiv 0,\,{1\over2}\text{ mod }1, \\ {1\over2} \sum_i \kappa_i \in \mathbb{Z} & \implies \sum_i \kappa_i \in 2\mathbb{Z}.\end{align*}These are the defining conditions for $\Gamma_8$, so $\Gamma_8$, so $\Gamma_8^* = \Gamma_8$, i.e. $\Gamma_8$ es auto-dual. Un auto-doble celosía también debe tener una unidad de volumen de la célula primitiva. Podemos comprobar esto explícitamente de la base anterior.
Ahora, podemos encontrar la transformación en $\tau \to -1/\tau$. Con el fin de utilizar la distribución de Poisson suma fórmula, queremos encontrar la transformada de Fourier de la sumando: la definición de $f(\lambda) = q^{\lambda^2/2}$$\theta_{E_8}(\tau) = \sum_{\lambda \in \Gamma_8} f(\lambda)$, es$$\tilde{f}(\kappa) = \int d^8\lambda\,\text{exp}(\pi i\tau \lambda^2 - 2\pi i\kappa \cdot \lambda) = \left({1\over{-i\tau}}\right)^4 \exp\left(-{{\pi i\kappa^2}\over\tau}\right),$$so that$$\sum_{\kappa \in \Gamma_8} \tilde{f}(\kappa) = (-i\tau)^{-4}\theta_{E_8}(-1/\tau).$$For a self-dual lattice, the Poisson summation formula gives$$\sum_{\lambda \in \Gamma_8} f(\lambda) = \sum_{\kappa \in \Gamma_8} \tilde{f}(\kappa),$$so we find$$\theta_{E_8}(-1/\tau) = (-i\tau)^4 \theta_{E_8}(\tau) = \tau^4 \theta_{E_8}(\tau).$$