$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove armada]{\displaystyle{#1}}\,}
\newcommand{\llaves}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
\lim_{n \to \infty}x_{n} & =
\lim_{n \to \infty}\sum_{k = 1}^{n}{kn \over n^{3} + k} =
\lim_{n \to \infty}\sum_{k = 1}^{n}{\pars{k + n^{3}}n - n^{4} \over k + n^{3}} =
\lim_{n \to \infty}\bracks{n^{2} -
n^{4}\sum_{k = 0}^{n - 1}{1 \over k + 1 + n^{3}}}
\\[5mm] & =
\lim_{n \to \infty}\bracks{n^{2} -
n^{4}\sum_{k = 0}^{\infty}
\pars{{1 \over k +1 + n^{3}} - {1 \over k + n + 1 + n^{3}}}}
\\[5mm] & =
\lim_{n \to \infty}\bracks{n^{2} - n^{4}\pars{H_{n + n^{3}} - H_{n^{3}}}}
\label{1}\tag{1}
\end{align}
donde $\ds{H_{m}}$ es un Número Armónico que tiene la
asintótica de expansión$\ds{\pars{\mbox{as}\ m \to \infty}}$:
$$
H_{m} \sim \ln\pars{m} + \gamma + {1 \over 2m} - {1 \over 12m^{2}}
$$
$\ds{\gamma}$ es el de Euler-Mascheroni Constante.
La expresión \eqref{1} se convierte en:
\begin{align}
\lim_{n \to \infty}x_{n} & =
\lim_{n \to \infty}\braces{n^{2} - n^{4}
\bracks{\ln\pars{n + n^{3} \over n^{3}} -
{1 \over 2}\,{n \over n^{3}\pars{n + n^{3}}}}} = \bbx{\ds{1 \over 2}}
\end{align}