$$\int_{0}^{\pi/ n}{\sin^3(x)\over [1+\cos^2(x)]^2}\mathrm dx=F(n)\tag1$$
Para $n\ge 1$
He calculado por:
$F(1)=1$
$F(2)={1\over 2}$
$F(3)={1\over 10}$
El general de $F(n)$ I no fue capaz de encontrar...
¿Cuál es la forma cerrada para $(1)?$
Un intento de
El uso de $\cos^2(x)={1+\cos(2x)\over 2}$ $1+\cos^2(x)={3+\cos(2x)\over 2}$
Llamar a un subsitition $u=3+\cos(2x)$ $du=-2\sin(2x)dx$
A continuación, $(1)$ se convierte en:
$$-\int_{1}^{\cos(2\pi/n)}{\sin^2(x)\over u^2\cos(x)}\mathrm du\tag2$$
$2+2\cos^2(x)=u$ $\sin^2(x)={4-u\over 2}$
$\cos(x)=\sqrt{u-2\over 2}$
$${\sqrt{2}\over 2}\int_{1}^{\cos(\pi/n)}{u-4\over u^2\sqrt{u-2}}\mathrm du\tag3$$
$${\sqrt{2}\over 2}\int_{1}^{\cos{(\pi/n)}}{1\over u\sqrt{u-2}}\mathrm du+{2\sqrt{2}}\int_{1}^{\cos(\pi/n)}{1\over u^2\sqrt{u-2}}\mathrm du\tag4$$
De Estándar integral de la tabla
$$\int{dx\over x\sqrt{ax+b}}={2\over \sqrt{-b}}\arctan\sqrt{ax+b\over -b}$$
$$\int{dx\over x^2\sqrt{ax+b}}=-{\sqrt{ax+b}\over bx}-{a\over 2b}\int{dx\over x\sqrt{ax+b}}$$
Sustitución de la misma,
$${\sqrt{2}\over 2}\cdot{2\over\sqrt{2}}\arctan\sqrt{u-2\over 2}-2\sqrt{2}\left[-{\sqrt{u-2\over -2u}}+{1\over 4}\left({2\over\sqrt{2}}\cdot\arctan{\sqrt{u-2\over2}}\right)\right]\tag5$$
Romper a
$$\arctan\sqrt{u-2\over 2}-\sqrt{2}\cdot{\sqrt{u-2}\over u}-\arctan\sqrt{u-2\over 2}\tag6$$
$$=-\sqrt{2}\cdot{\sqrt{u-2}\over u}\tag7$$
Yo no lo estoy en el camino correcto, alguna ayuda?