$$ \begin{align}
\int_a^b\frac{e^{-x}-e^{-2x}}{x}\,\mathrm{d}x
&=\int_a^b\frac{e^{-x}}{x}\,\mathrm{d}x-\int_a^b\frac{e^{-2x}}{x}\,\mathrm{d}x\\
&=\int_a^b\frac{e^{-x}}{x}\,\mathrm{d}x-\int_{2a}^{2b}\frac{e^{-x}}{x}\,\mathrm{d}x\\
&=\int_a^{2a}\frac{e^{-x}}{x}\,\mathrm{d}x-\int_b^{2b}\frac{e^{-x}}{x}\,\mathrm{d}x\\[9pt]
&\to\log(2)-0
\end {align} $$ como$a\to0$ y$b\to\infty$ desde, para cualquier$c\gt0$, $$ e ^ {- 2c} \ log (2) \ le \ int_c ^ {2c} \ frac {e ^ {- x}} {x} \, \ mathrm {d} x \ le e ^ {- c} \ log (2) $$
No hay nada especial acerca de$e^{-x}$ aquí. Mientras$\lim\limits_{x\to0}f(x)=v_0$ y$\lim\limits_{x\to\infty}f(x)=v_\infty$, entonces $$ \begin{align}
\int_a^b\frac{f(x)-f(\lambda x)}{x}\,\mathrm{d}x
&=\int_a^b\frac{f(x)}{x}\,\mathrm{d}x-\int_a^b\frac{f(\lambda x)}{x}\,\mathrm{d}x\\
&=\int_a^b\frac{f(x)}{x}\,\mathrm{d}x-\int_{\lambda a}^{\lambda b}\frac{f(x)}{x}\,\mathrm{d}x\\
&=\int_a^{\lambda a}\frac{f(x)}{x}\,\mathrm{d}x-\int_b^{\lambda b}\frac{f(x)}{x}\,\mathrm{d}x\\[9pt]
&\to v_0\log(\lambda)-v_\infty\log(\lambda)\\[6pt]
\int_0^\infty\frac{f(x)-f(\lambda x)}{x}\,\mathrm{d}x
&=(v_0-v_\infty)\log(\lambda)
\end {align} $$