Tengo un conjunto de 29 de junto de ecuaciones cuadráticas, con 29 variables desconocidas.
¿Alguien puede ofrecer ningún consejo sobre cómo podía resolver esto?
3 días de mirar fijamente una pared hasta el momento ha dado a mí, sin pensar en cómo hacer todo esto.
EDITAR: $ T_1 = X_1^{2} X_2 X_3 X_4 X_5 X_6 \\$
$ T_2 = X_2^{2} X_1 X_3 X_4 X_5 X_6 \\$
$ T_3 = X_3^{2} X_1 X_2 X_4 X_5 X_6 \\$
$ T_4 = X_4^{2} X_1 X_2 X_3 X_5 X_6 \\$
$ T_5 = X_5^{2} X_1 X_2 X_3 X_4 X_6 \\$
$ T_6 = X_6^{2} X_1 X_2 X_3 X_4 X_5 \\$
$T_7 = X_1 X_2 X_3 X_4 X_5 X_6 X_7^2 X_8 X_9 X_{10} (1-X_5) \\$
$T_8 = X_1 X_2 X_3 X_4 X_5 X_6 X_7 X_8^2 X_9 X_{10} (1-X_5) \\$
$T_9 = X_1 X_2 X_3 X_4 X_5 X_6 X_7 X_8 X_9^2 X_{10} (1-X_5) \\$
$T_{10} = X_1 X_2 X_3 X_4 X_5 X_6 X_7 X_8 X_9 X_{10}^2 (1-X_5) \\$
$T_{11} = X_1 X_2 X_3 X_4 X_5 X_6 \{ (1-X_6) + (1-X_{10})(1-X_5)X_7 X_8 X_9 X_{10} \} X_{11}^2 X_{12} X_{13} X_{14} X_{15} \\$
$T_{12} = X_1 X_2 X_3 X_4 X_5 X_6 \{ (1-X_6) + (1-X_{10})(1-X_5)X_7 X_8 X_9 X_{10} \} X_{11} X_{12}^2 X_{13} X_{14} X_{15}\\$
$T_{13} = X_1 X_2 X_3 X_4 X_5 X_6 \{ (1-X_6) + (1-X_{10})(1-X_5)X_7 X_8 X_9 X_{10} \} X_{11} X_{12} X_{13}^2 X_{14} X_{15} \\$
$T_{14} = X_1 X_2 X_3 X_4 X_5 X_6 \{ (1-X_6) + (1-X_{10})(1-X_5)X_7 X_8 X_9 X_{10} \} X_{11} X_{12} X_{13} X_{14}^2 X_{15} \\$
$T_{15} = X_1 X_2 X_3 X_4 X_5 X_6 \{ (1-X_6) + (1-X_{10})(1-X_5)X_7 X_8 X_9 X_{10} \} X_{11} X_{12} X_{13} X_{14} X_{15}^2\\$
$T_{16} = X_1 X_2 X_3 X_4 X_5 X_6 (1-X_6)(1-X_9)X_7 X_8 X_9 X_{10} \} X_{11} X_{12} X_{13} X_{14} X_{15} X_{16}^2 X_{17}\\$
$T_{17} = X_1 X_2 X_3 X_4 X_5 X_6 (1-X_6)(1-X_9)X_7 X_8 X_9 X_{10} \} X_{11} X_{12} X_{13} X_{14} X_{15} X_{16} X_{17}^2\\$
$T_{18} = X_1 X_2 X_3 X_4 X_5 X_6 X_7 X_8 X_9 X_{10} \} X_{11} X_{12} X_{13} X_{14} X_{15} X_{16} X_{17} (1-X_9)(1-X_5)(1-X_{16}) X_{18}^2 X_{19} X_{20} X_{21}\\$
$T_{19} = X_1 X_2 X_3 X_4 X_5 X_6 X_7 X_8 X_9 X_{10} \} X_{11} X_{12} X_{13} X_{14} X_{15} X_{16} X_{17} (1-X_9)(1-X_5)(1-X_{16}) X_{18} X_{19}^2 X_{20} X_{21}\\$
$T_{20} = X_1 X_2 X_3 X_4 X_5 X_6 X_7 X_8 X_9 X_{10} \} X_{11} X_{12} X_{13} X_{14} X_{15} X_{16} X_{17} (1-X_9)(1-X_5)(1-X_{16}) X_{18} X_{19} X_{20}^2 X_{21}\\$
$T_{21} = X_1 X_2 X_3 X_4 X_5 X_6 X_7 X_8 X_9 X_{10} \} X_{11} X_{12} X_{13} X_{14} X_{15} X_{16} X_{17} (1-X_9)(1-X_5)(1-X_{16}) X_{18} X_{19} X_{20} X_{21}^2\\$
$T_{22} = X_1 X_2 X_3 X_4 X_5 X_6 \{ (1-X_5) X_7 X_8 X_9 X_{10} [(1-X_{17} + (1-X_9)(1-X_7)X_{16}X_{17}] + (1-X_2)\} X_{22}^2 X_{23}$
$T_{23} = X_1 X_2 X_3 X_4 X_5 X_6 \{ (1-X_5) X_7 X_8 X_9 X_{10} [(1-X_{17} + (1-X_9)(1-X_7)X_{16}X_{17}] + (1-X_2)\} X_{22} X_{23}^2$
$T_{24} = X_1 X_2 X_3 X_4 X_5 X_6 \{ (1-X_3) + (1-X_5)(1-X_8)X_7 X_8 X_9 X_{10} \} X_{24}^2 X_{25}$
$T_{25} = X_1 X_2 X_3 X_4 X_5 X_6 \{ (1-X_3) + (1-X_5)(1-X_8)X_7 X_8 X_9 X_{10} \} X_{24} X_{25}^2$
$T_{26} = X_1, X_2 X_3 X_4 X_5 X_6 \{ (1-X_4) + \{ (1-X_6) + (1-X_{10})(1-X_5))X_7 X_8 X_9 X_{10} X_{11}X_{12} X_{13} X_{14} X_{15} \}(1-X_{12}) + X_7 X_8 X_9 X_{10} X_{11}X_{12} X_{13} X_{14} X_{15}X_{16}X_{17}X_{18}X_{19}X_{20}X_{21}(1-X_{20})(1-X_5)(1-X_9)(1-x_16) +(1-X_25)\{(1-X_3) + (1-X_5)X_7 X_8 X_9 X_{10} (1-X_8) \}X_{24}X_{25} \} X_{26} $
$T_{27} = X_1, X_2 X_3 X_4 X_5 X_6 \{ (1-X_4) + \{ (1-X_6) + (1-X_{10})(1-X_5))X_7 X_8 X_9 X_{10} X_{11}X_{12} X_{13} X_{14} X_{15} \}(1-X_{12}) + X_7 X_8 X_9 X_{10} X_{11}X_{12} X_{13} X_{14} X_{15}X_{16}X_{17}X_{18}X_{19}X_{20}X_{21}(1-X_{20})(1-X_5)(1-X_9)(1-x_16) +(1-X_25)\{(1-X_3) + (1-X_5)X_7 X_8 X_9 X_{10} (1-X_8) \}X_{24}X_{25} \} X_{27} $
$T_{28} = \{ X_1, X_2 X_3 X_4 X_5 X_6 \{ (1-X_4) + \{ (1-X_6) + (1-X_{10})(1-X_5))X_7 X_8 X_9 X_{10} X_{11}X_{12} X_{13} X_{14} X_{15} \}(1-X_{12}) + X_7 X_8 X_9 X_{10} X_{11}X_{12} X_{13} X_{14} X_{15}X_{16}X_{17}X_{18}X_{19}X_{20}X_{21}(1-X_{20})(1-X_5)(1-X_9)(1-x_16)+(1-X_25)\{(1-X_3) + (1-X_5)X_7 X_8 X_9 X_{10} (1-X_8) \}X_{24}X_{25} \} \}(1-X_{27}+ X_1, X_2 X_3 X_4 X_5 X_6 X_7 X_8 X_9 X_{10} \} X_{11} X_{12} X_{13} X_{14} X_{15} X_{16} X_{17} (1-X_9)(1-X_5)(1-X_{16}) X_{18} X_{19} X_{20} X_{21}(1-X_20) +(1-X_{13})X_{28}X_{29} X_1, X_2 X_3 X_4 X_5 X_6 \{ (1-X_6) + (1-X_{10})(1-X_5)X_7 X_8 X_9 X_{10} \} X_{11} X_{12} X_{13} X_{14} X_{15} \} X_{28} $
$T_{29} = \{ X_1, X_2 X_3 X_4 X_5 X_6 \{ (1-X_4) + \{ (1-X_6) + (1-X_{10})(1-X_5))X_7 X_8 X_9 X_{10} X_{11}X_{12} X_{13} X_{14} X_{15} \}(1-X_{12}) + X_7 X_8 X_9 X_{10} X_{11}X_{12} X_{13} X_{14} X_{15}X_{16}X_{17}X_{18}X_{19}X_{20}X_{21}(1-X_{20})(1-X_5)(1-X_9)(1-x_16)+(1-X_25)\{(1-X_3) + (1-X_5)X_7 X_8 X_9 X_{10} (1-X_8) \}X_{24}X_{25} \} \}(1-X_{27}+ X_1, X_2 X_3 X_4 X_5 X_6 X_7 X_8 X_9 X_{10} \} X_{11} X_{12} X_{13} X_{14} X_{15} X_{16} X_{17} (1-X_9)(1-X_5)(1-X_{16}) X_{18} X_{19} X_{20} X_{21}(1-X_20) +(1-X_{13})X_{28}X_{29} X_1, X_2 X_3 X_4 X_5 X_6 \{ (1-X_6) + (1-X_{10})(1-X_5)X_7 X_8 X_9 X_{10} \} X_{11} X_{12} X_{13} X_{14} X_{15} \} X_{29} $
Aquí están las ecuaciones, mi incógnitas son X términos. T términos son conocidos.
T y X, los términos son reales y positivos.
Gracias por los comentarios, todavía tratando de entender lo que es una "base de Groebner" está tan lejos... EDICIÓN FINAL