En términos formales, el gráfico de un mapa de $f: X \to Y$ es sólo el mapa $$(1, f): X \to X \times Y.$$ This makes sense in any category with products, denoted $\veces$. Of course, one has a certain mental picture, at least in the category of sets: I'm thinking of an $X$-axis, and a $S$-axis, and the graph as a curve in the absolutely ordinary, school-mathematics way. I'm also visualizing the way in which each point on the $X$-axis has assigned to it a point on the curve, namely, the one directly above it. This assignment is the map $(1, f)$ sí misma. La imagen de este mapa es la curva.
En términos formales, el cograph de un mapa de $f: X \to Y$ es sólo el mapa $$[f, 1]: X + Y \to Y.$$ This makes sense in any category with sums (coproducts), denoted $+$. (Usually one would write a column vector instead of $[f, 1]$, but I don't want to figure out how to typeset that, and I hope you know what I mean.) This corresponds to a different mental picture of a map (again sticking to maps of sets): it's the one where you draw the set $X$ on the left, as a bunch of dots in a circle, the set $S$ on the right, as another bunch of dots in a circle, and arrows going from the various points of $X$ to their images in $$ Y.
Esto se discute en Lawvere y Rosebrugh del libro Establece para las Matemáticas. Si usted sigue el enlace y descarga el capítulo de la muestra, usted encontrará una foto de el tipo que me refiero, y la palabra "cograph", en la página 2.