Deje $A=\{1^2,2^2,3^2,\cdots,1000^2\}$. Cómo probar :
Existen $A_{1}=\{a_{1},a_{2},a_{3},\cdots,a_{500}\}\subset A$, $A_{2}=\{b_{1},b_{2},\cdots,b_{500}\}\subset A$, tal que $A_{1}\bigcup A_{2}=A,A_{1}\bigcap A_{2}=\varnothing$, e $a_{1}+a_{2}+\cdots+a_{500}=b_{1}+b_{2}+\cdots+b_{500}$ ?