Considere la posibilidad de $$\int_{-1}^{1}\frac{\sqrt{(1-x^{2})}}{1+x^{2}}dx$$ I have a problem with this integral; the method I know consists in calculating the complex integral of $$f(z) = \left( \frac{z-1}{z+1} \right)^{\frac{1}{2}} \frac{1+z}{1+z^{2}}$$ along the curve formed by the " shrinking dogbone contour" withe centres $\{-1,1\}$ and the circumference of radius $R \rightarrow \infty$. But I obtain $0$, es imposible. Lo que está mal con este método ?
En particular, ¿cuáles son los residuos de $f(z) $ $\{-i,i\} ? $