$\newcommand{\+}{^{\daga}}%
\newcommand{\ángulos}[1]{\left\langle #1 \right\rangle}%
\newcommand{\llaves}[1]{\left\lbrace #1 \right\rbrace}%
\newcommand{\bracks}[1]{\left\lbrack #1 \right\rbrack}%
\newcommand{\ceil}[1]{\,\left\lceil #1 \right\rceil\,}%
\newcommand{\dd}{{\rm d}}%
\newcommand{\ds}[1]{\displaystyle{#1}}%
\newcommand{\equalby}[1]{{#1 \cima {= \cima \vphantom{\enorme}}}}%
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}%
\newcommand{\fermi}{\,{\rm f}}%
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}%
\newcommand{\mitad}{{1 \over 2}}%
\newcommand{\ic}{{\rm i}}%
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}%
\newcommand{\isdiv}{\,\left.\a la derecha\vert\,}%
\newcommand{\cy}[1]{\left\vert #1\right\rangle}%
\newcommand{\ol}[1]{\overline{#1}}%
\newcommand{\pars}[1]{\left( #1 \right)}%
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}%
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,#2\,}\,}%
\newcommand{\sech}{\,{\rm sech}}%
\newcommand{\sgn}{\,{\rm sgn}}%
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}%
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}$
$\ds{\fermi\pars{\lambda}
=
\int_{0}^{\pi}\ln\pars{1 + \lambda\cos\pars{x}}\,\dd x:
\ {\large ? }.\qquad\lambda \delta \in {\mathbb R}\,,
\quad\verts{\lambda} < \delta < 1.\quad}$ It's clear that $\ds{\fermi\pars{\lambda}}$ is an even function of $\ds{\lambda}$ and $\ds{\fermi\pars{0} = 0}$ tal que
calculamos
\begin{align}
\fermi\pars{\lambda \not= 0}&=
\int_{0}^{\pi}\ln\pars{1 + \verts{\lambda}\cos\pars{x}}\,\dd x
=\half\int_{-\pi}^{\pi}\ln\pars{1 + \verts{\lambda}\cos\pars{x}}\,\dd x
\\[3mm]&=
\half\int_{\verts{z} = 1 \atop {\vphantom{\Huge A}\verts{{\rm Arg}\pars{z}} < \pi}}
\ln\pars{1 + \verts{\lambda}\,{z^{2} + 1 \over 2z}}\,{\dd z \over \ic z}
\\[3mm]&=-\,\half\,\ic
\int_{\verts{z} = 1 \atop {\vphantom{\Huge A}\verts{{\rm Arg}\pars{z}} < \pi}}
\ln\pars{\verts{\lambda}z^{2} + 2z + \verts{\lambda} \over 2z}\,{\dd z \over z}
\end{align}
Los ceros $\ds{z_{\pm}}$ $\ds{\verts{\lambda}z^{2} + 2z + \verts{\lambda}}$
dada por:
$$
z_{\pm} \equiv {-1 \pm \raíz{1 - \lambda^{2}} \\verts{\lambda}}\,,\qquad
z_{-} < -1\,,\quad -1 < z_{+} < 0
$$
A continuación,
$$
\fermi\pars{\lambda \no=0}=
-\,\media\,\ic
\int_{\verts{z} = 1 \cima {\vphantom{\Enorme}\verts{{\rm Arg}\pars{z}} < \pi}}
\ln\pars{\bracks{z - z_{-}}\bracks{z - z_{+}}}\,{\dd z \sobre z}
+\
\overbrace{\media\,\ic
\int_{\verts{z} = 1 \cima {\vphantom{\Enorme}\verts{{\rm Arg}\pars{z}} < \pi}}
\ln\pars{2z \\verts{\lambda}}\,{\dd z \sobre z}}
^{\ds{\pi\ln\pars{\verts{\lambda} \over 2}}}
$$
\begin{align}
&\color{#c00000}{\fermi\pars{\lambda\not=0} - \pi\ln\pars{\verts{\lambda} \over 2}}
\\[3mm]&=\half\,\ic\int_{-1}^{z_{+}}{\ln\pars{\verts{x - z_{-}}\verts{x - z_{+}}} + \ic\pi
\over x + \ic 0^{+}}\,\dd x
+
\half\,\ic\int_{z_{+}}^{-1}{\ln\pars{\verts{x - z_{-}}\verts{x - z_{+}}} - \ic\pi
\over x - \ic 0^{+}}\,\dd x
\\[3mm]&=\half\,\ic\int_{-1}^{z_{+}}2\pi\ic\,{\dd x \over x}
=-\pi\ln\pars{\verts{z_{+}}}
=-\pi\ln\pars{1 - \root{1 - \lambda^{2}} \over \verts{\lambda}}
=\color{#c00000}{-\pi\ln\pars{\verts{\lambda} \over 1 + \root{1 - \lambda^{2}}}}
\end{align}
$$\color{#00f}{\large%
\fermi\pars{\lambda}
=
\int_{0}^{\pi}\ln\pars{1 + \lambda\cos\pars{x}}\,\dd x
=-\pi\ln\pars{2 \más de 1 + \raíz{1 - \lambda^{2}}}}\,,\qquad
\lambda \en \pars{-1,1}
$$