$\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle} \newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack} \newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,} \newcommand{\dd}{{\rm d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,{\rm e}^{#1}\,} \newcommand{\fermi}{\,{\rm f}} \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,} \newcommand{\half}{{1 \over 2}} \newcommand{\ic}{{\rm i}} \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\Li}[1]{\,{\rm Li}_{#1}} \newcommand{\pars}[1]{\left(\, #1 \,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}} \newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,} \newcommand{\sech}{\,{\rm sech}} \newcommand{\sgn}{\,{\rm sgn}} \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}} \newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$ $\ds{\int_{-\infty}^{\infty}{\dd x \over x^{4} + ax^{2} + b^{2}} ={\pi \over b\root{2b + a}}:\ {\large ?}.\qquad a, b\ >\ 0\,,\quad a^{2} - 4b^{2}\ \geq\ 0}$ .
De hecho, esta es esencialmente la @user111187 prueba con el adición de algunos detalles omitidos :
\begin{align}{\cal I}&\equiv\color{#66f}{\large \int_{-\infty}^{\infty}{\dd x \over x^{4} + ax^{2} + b^{2}}} =2\int_{0}^{\infty}{1 \over x^{2}}\,{\dd x \over x^{2} + a + b^{2}/x^{2}} \\[5mm]&\imp\quad \half\,{\cal I}=\int_{0}^{\infty}{1 \over x^{2}}\, {\dd x \over \pars{x - b/x}^{2} + 2b + a}\tag{1} \end{align}
Con $\ds{{b \over x}\equiv t\ \imp\ x = {b \over t}}$ tendremos:
\begin{align}\half\,{\cal I}& =\int_{\infty}^{0}{t^{2} \over b^{2}}\, {-b\,\dd t/t^{2} \over \pars{b/t - t}^{2} + 2b + a} ={1 \over b}\int_{0}^{\infty}{\dd t \over \pars{b/t - t}^{2} + 2b + a}\tag{2} \end{align}
Con $\pars{1}$ y $\pars{2}$ :
\begin{align} \half\,b{\cal I}&=\int_{0}^{\infty}{b \over x^{2}}\, {\dd x \over \pars{x - b/x}^{2} + 2b + a} \\[5mm]\half\,b{\cal I}& =\int_{0}^{\infty}{\dd x \over \pars{x - b/x}^{2} + 2b + a} \\[5mm]\mbox{and}\ b{\cal I}&=\half\,b{\cal I} + \half\,b{\cal I} =\int_{0}^{\infty}{\pars{b/x^{2} + 1}\,\dd x \over \pars{x - b/x}^{2} + 2b + a} \end{align}
Con $\ds{u \equiv x - {b \over x}\ \imp\ \dd u = \pars{1 + {b \over x^{2}}} \,\dd x}$ obtendremos
\begin{align} b{\cal I}& =\int_{-\infty}^{\infty}{\dd u \over u^{2} + 2b + a} ={2 \over \root{2b + a}}\ \overbrace{\int_{0}^{\infty}{\dd u \over u^{2} + 1}} ^{\ds{\color{#c00000}{\pi \over 2}}}\ =\ {\pi \over \root{2b + a}} \\[5mm]\imp{\cal I}&\equiv\color{#66f}{\large \int_{-\infty}^{\infty}{\dd x \over x^{4} + ax^{2} + b^{2}} ={\pi \over b\root{2b + a}}} \end{align}