Ya que las opciones son enteros, esta es una escala de likert, por lo que los datos ordinales. Usted puede usar una Prueba de Chi-Cuadrado de Independencia para probar la hipótesis
H0:pi0=p0j for all cells (i,j)
Ha:∃(i,j) such that pi0≠p0j
or more simply
H0:group and satisfaction level are independent
Ha:group and satisfaction level are associated
We have
pi0=ni0n,p0j=n0jn
The assumption is that all of the expected cell counts ≥5.
We have
X2=∑allcells(nij−Eij)2Eij
where
Eij=(ni0n0j)n
and
X2∼χ2(r−1)(c−1)
El uso de Bruce falsos conjunto de datos, la prueba se puede ejecutar en R usando:
library(reshape)
df <- data.frame(Rating = c("0","1","2","3","4","5","0","1","2","3","4","5"),
Group= c("x","x","x","x","x","x","y","y","y","y","y","y"),
INTERACTIONS = c(3,5,16,9,6,1,4,5,12,3,20,16),
stringsAsFactors=FALSE)
df <- melt(df,id.vars=c("Rating","Group"))
df <- cast(df,formula=Rating~Group)
df <- replace(df,is.na(df),0)
chisq.test(df)
que devuelve
Pearson's Chi-squared test
data: df
X-squared = 21.342, df = 5, p-value = 0.0006981
así que tenemos una evidencia muy fuerte de que los dos grupos que tienen diferentes niveles de satisfacción.