\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove armada]{\displaystyle{#1}}\,}
\newcommand{\llaves}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}
\ds{\int_{0}^{\pi/2}{\arctan\pars{\bronceado^{2}\pars{x}} \over
\sin^{2}\pars{x}\raíz{\tan\pars{x}}}\,\bracks{3 \pm \tan\pars{x}}\,\dd x =
2\pi\raíz{2 \pm \raíz{2}}:\ {\large ?}}.
\begin{align}
&\int_{0}^{\pi/2}{\arctan\pars{\tan^{2}\pars{x}} \over
\sin^{2}\pars{x}\root{\tan\pars{x}}}\,\bracks{3 \pm \tan\pars{x}}\,\dd x
\\[1cm] & =
\int_{x\ =\ 0}^{x\ =\ \pi/2}
{\tan^{2}\pars{x} + 1 \over \tan^{2}\pars{x}}
{\arctan\pars{\tan^{2}\pars{x}} \over
\bracks{\tan^{2}\pars{x}}^{1/4}}\,\bracks{3 \pm \bracks{\tan^{2}\pars{x}}^{1/2}}
\,\times
\\[3mm] & \phantom{=\int_{x\ =\ 0}^{x\ =\ \pi/2}}
{\dd\bracks{\tan^{2}\pars{x}} \over 2\bracks{\tan^{2}\pars{x}}^{1/2}\bracks{\tan^{2}\pars{x} + 1}}
\\[1cm] \stackrel{\tan^{2}\pars{x}\ \mapsto\ x}{=}\,\,\,&
{1 \over 2}\int_{0}^{\infty}{\arctan\pars{x} \over x^{7/4}}
\,\pars{3 \pm x^{1/2}}\,\dd x
\\[5mm] = &\
{1 \over 2}\int_{x\ =\ 0}^{x\ \to\ \infty}\!\!\!\!\!\arctan\pars{x}
\,\dd\bracks{\pars{-4x^{-3/4}} \pm \pars{-4x^{-1/4}}}
\\[5mm] \stackrel{\mbox{IBP}}{=}\,\,\,&
2\int_{0}^{\infty}{x^{-3/4} \pm x^{-1/4} \over x^{2} + 1}\,\dd x
\,\,\,\stackrel{x^{2}\ \mapsto\ x}{=}\,\,\,
\int_{0}^{\infty}{x^{-7/8} \pm x^{-5/8} \over x + 1}\,\dd x
\\[5mm] \stackrel{t\ =\ 1/\pars{x + 1} \iff x = 1/t - 1}{=}\,\,\,&
\int_{1}^{0}t\bracks{\pars{{1 \over t} - 1}^{-7/8} \pm
\pars{{1 \over t} - 1}^{-5/8}}\pars{-\,{\dd t \over t^{2}}}
\\[5mm] = &\
\int_{0}^{1}t^{-1/8}\,\pars{1 - t}^{-7/8}\,\dd t \pm
\int_{0}^{1}t^{-3/8}\,\pars{1 - t}^{-5/8}\,\dd t
\\[5mm] = &\
{\Gamma\pars{7/8}\Gamma\pars{1/8} \over \Gamma\pars{1}} \pm
{\Gamma\pars{5/8}\Gamma\pars{3/8} \over \Gamma\pars{1}} =
{\pi \over \sin\pars{\pi/8}} \pm {\pi \over \sin\pars{3\pi/8}}
\\[5mm] = &\
\pi\bracks{{1 \over \sin\pars{\pi/8}} \pm {1 \over \cos\pars{\pi/8}}}
\\[5mm] = &\
2\pi\,\braces{%
{\root{\bracks{1 + \cos\pars{\pi/4}}/2} \over \sin\pars{\pi/4}} \pm
{\root{\bracks{1 - \cos\pars{\pi/4}}/2} \over \sin\pars{\pi/4}}}
\\[5mm] & =
2\pi\,{\root{2 + \root{2}} \pm \root{2 - \root{2}} \over \root{2}}
= \bbx{\root{2 \pm \root{2}}}
\end{align}