Loading [MathJax]/extensions/TeX/newcommand.js

4 votos

Cómo mostrar que π/20arctan(tan2x)sin2xtanx(3±tanx)dx=2π2±2?

Un poco de desorden integral, pero al parecer el rendimiento de una simple forma cerrada

Dado que:

π/20arctan(tan2x)sin2xtanx(3±tanx)dx=2π2±2

Simplificando esta parte no produce un sencillo.

3+tanxsin2xtanx

Otra cosa que se puede dividir la integral de la (1)

3π/20arctan(tan2x)sin2xtanxdx+π/20tanxarctan(tan2x)sin2xdx=I+J

2sin2x=11tan2x1+tan2x

sin2x=tan2x1+tan2x

I=3π/201+tan2xtan2xarctan(tan2x)tanxdx

J=π/201+tan2xtan2xtanxarctan(tan2x)dx

u=tan2xdu=2tanxsec2xdx=2u1/2+2u3/2

I+J

3201+uu7/4+u11/4arctan(u)du+1201+uu5/4+u9/4arctan(u)

para simplificar

3201u7/4arctan(u)du+1201u5/4arctan(u)

120(3+u1/2)arctan(u)u7/4du

u=v4du=4v3dv

20(3+v2)arctan(v4)v4dv

Q: ¿Cómo podemos demostrar (1)?

5voto

Felix Marin Puntos 32763

\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove armada]{\displaystyle{#1}}\,} \newcommand{\llaves}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}} \newcommand{\raíz}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}

\ds{\int_{0}^{\pi/2}{\arctan\pars{\bronceado^{2}\pars{x}} \over \sin^{2}\pars{x}\raíz{\tan\pars{x}}}\,\bracks{3 \pm \tan\pars{x}}\,\dd x = 2\pi\raíz{2 \pm \raíz{2}}:\ {\large ?}}.

\begin{align} &\int_{0}^{\pi/2}{\arctan\pars{\tan^{2}\pars{x}} \over \sin^{2}\pars{x}\root{\tan\pars{x}}}\,\bracks{3 \pm \tan\pars{x}}\,\dd x \\[1cm] & = \int_{x\ =\ 0}^{x\ =\ \pi/2} {\tan^{2}\pars{x} + 1 \over \tan^{2}\pars{x}} {\arctan\pars{\tan^{2}\pars{x}} \over \bracks{\tan^{2}\pars{x}}^{1/4}}\,\bracks{3 \pm \bracks{\tan^{2}\pars{x}}^{1/2}} \,\times \\[3mm] & \phantom{=\int_{x\ =\ 0}^{x\ =\ \pi/2}} {\dd\bracks{\tan^{2}\pars{x}} \over 2\bracks{\tan^{2}\pars{x}}^{1/2}\bracks{\tan^{2}\pars{x} + 1}} \\[1cm] \stackrel{\tan^{2}\pars{x}\ \mapsto\ x}{=}\,\,\,& {1 \over 2}\int_{0}^{\infty}{\arctan\pars{x} \over x^{7/4}} \,\pars{3 \pm x^{1/2}}\,\dd x \\[5mm] = &\ {1 \over 2}\int_{x\ =\ 0}^{x\ \to\ \infty}\!\!\!\!\!\arctan\pars{x} \,\dd\bracks{\pars{-4x^{-3/4}} \pm \pars{-4x^{-1/4}}} \\[5mm] \stackrel{\mbox{IBP}}{=}\,\,\,& 2\int_{0}^{\infty}{x^{-3/4} \pm x^{-1/4} \over x^{2} + 1}\,\dd x \,\,\,\stackrel{x^{2}\ \mapsto\ x}{=}\,\,\, \int_{0}^{\infty}{x^{-7/8} \pm x^{-5/8} \over x + 1}\,\dd x \\[5mm] \stackrel{t\ =\ 1/\pars{x + 1} \iff x = 1/t - 1}{=}\,\,\,& \int_{1}^{0}t\bracks{\pars{{1 \over t} - 1}^{-7/8} \pm \pars{{1 \over t} - 1}^{-5/8}}\pars{-\,{\dd t \over t^{2}}} \\[5mm] = &\ \int_{0}^{1}t^{-1/8}\,\pars{1 - t}^{-7/8}\,\dd t \pm \int_{0}^{1}t^{-3/8}\,\pars{1 - t}^{-5/8}\,\dd t \\[5mm] = &\ {\Gamma\pars{7/8}\Gamma\pars{1/8} \over \Gamma\pars{1}} \pm {\Gamma\pars{5/8}\Gamma\pars{3/8} \over \Gamma\pars{1}} = {\pi \over \sin\pars{\pi/8}} \pm {\pi \over \sin\pars{3\pi/8}} \\[5mm] = &\ \pi\bracks{{1 \over \sin\pars{\pi/8}} \pm {1 \over \cos\pars{\pi/8}}} \\[5mm] = &\ 2\pi\,\braces{% {\root{\bracks{1 + \cos\pars{\pi/4}}/2} \over \sin\pars{\pi/4}} \pm {\root{\bracks{1 - \cos\pars{\pi/4}}/2} \over \sin\pars{\pi/4}}} \\[5mm] & = 2\pi\,{\root{2 + \root{2}} \pm \root{2 - \root{2}} \over \root{2}} = \bbx{\root{2 \pm \root{2}}} \end{align}

4voto

Roger Hoover Puntos 56

Mediante el establecimiento x=\arctan t nos quedamos con \int_{0}^{+\infty}\frac{\arctan(t^2)}{t^{5/2}}(3\pm t)\,dt \stackrel{t\mapsto\sqrt{u}}{=} \frac{1}{2}\int_{0}^{+\infty}\frac{3\pm\sqrt{u}}{u^{7/4}}\arctan(u)\,du \tag{1} y podemos aplicar Feynman, el truco de la a \int_{0}^{+\infty}\frac{3\pm\sqrt{u}}{u^{7/4}}\arctan(\alpha u)\,du. Tenemos: \int_{0}^{+\infty}\frac{(3\pm\sqrt{u})u}{u^{7/4}(1+\alpha^2 u^2)}\,du = \frac{\pi}{2\alpha^{3/4}}\left(3\sqrt{\alpha}\csc\frac{\pi}{8}\pm\sec\frac{\pi}{8}\right) \tag{2} para cualquier \alpha<0 por el teorema de los residuos, de ahí el reclamo fácilmente se deduce mediante la integración de (2)(0,1).

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X