Si $\sqrt{\gamma_n}$ es $L^2(\mu)$ -Cauchy, existe $\delta\in L^2(\mu)$ tal que $$ \ lim_ {n \ to \ infty} \ | \ sqrt {\ gamma_n} - \ delta \ | _ { L ^ 2} = 0. $$ Observe que $$ \begin{align*}
\int_\Omega |\gamma_n-\delta^2|d\mu &= \int_\Omega |\sqrt{\gamma_n}-\delta| |\sqrt{\gamma_n}+\delta|d\mu\\&\le\left(\int_\Omega |\sqrt{\gamma_n}-\delta|^2 d\mu\right)^{1/2}\left(\int_\Omega |\sqrt{\gamma_n}+\delta|^2d\mu\right)^{1/2}\\
&\le \|\sqrt{\gamma_n}-\delta\|_{L^2}\|\sqrt{\gamma_n}+\delta\|_{L^2}\\&\le
\|\sqrt{\gamma_n}-\delta\|_{L^2}\left(\|\sqrt{\gamma_n}\|_{L^2}+\|\delta\|_{L^2}\right).
\end {align *}$$ Since $ \ | \ sqrt {\ gamma_n} \ | _ {L ^ 2} \ le M$, $ \ | \ delta \ | _ {L ^ 2} \ le M$ for some $ M> 0 $ , tenemos $$ \begin{align*}
\|\gamma_n -\delta^2\|_{L^1}=\int_\Omega |\gamma_n-\delta^2|d\mu \ \le\ 2M \|\sqrt{\gamma_n}-\delta\|_{L^2}\xrightarrow{n\to\infty} 0
\end {align *}$$ as wanted. This $ L ^ 1 $ -limit es, por supuesto, único.