Pregunta:
Encontrar la integral $$I=\int\dfrac{1}{1+\sqrt{x}+\sqrt{x+1}}dx$$
mi solución: deje $\sqrt{x}+\sqrt{x+1}=t\tag{1}$ entonces $$t(\sqrt{x+1}-\sqrt{x})=1$$ $$\Longrightarrow \sqrt{x+1}-\sqrt{x}=\dfrac{1}{t}\tag{2}$$ $(1)-(2)$ hemos $$2\sqrt{x}=t-\dfrac{1}{t}\Longrightarrow x=\dfrac{1}{4}(t-\dfrac{1}{t})^2$$ así $$dx=\dfrac{1}{2}(t-\dfrac{1}{t})(1+\dfrac{1}{t^2})dt=\dfrac{t^4-1}{2t^3}dt$$
$$I=\int\dfrac{1}{1+t}\cdot\dfrac{t^4-1}{2t^3}dt=\dfrac{1}{2}\int\left(1+\dfrac{1}{t}+\dfrac{1}{t^2}+\dfrac{1}{t^3}\right)dt=\dfrac{1}{2}\left(t+\ln{t}-\dfrac{1}{t}-\dfrac{1}{2t^2}+C\right)$$ así $$I=\dfrac{1}{2}\left(\sqrt{x}+\sqrt{x+1}+\ln{(\sqrt{x}+\sqrt{x+1})}-\dfrac{1}{\sqrt{x}+\sqrt{x+1}}-\dfrac{1}{2(\sqrt{x}+\sqrt{x+1})^2}+C\right)$$
Mi pregunta: tienes otros métodos? Muchas gracias