Averigüe el valor de la integral $$\int_{-2}^{2} \lfloor x^2-1\rfloor dx$$ where $ [x]$ denotes the floor function (i.e., $ [x]$ is the greatest integer $ \ le x $ .)
Mi intento ..... $$\int_{-2}^2 \lfloor x^2 – 1\rfloor dx = 2\int_0^2 \lfloor x^2-1\rfloor dx$$ Because $ \ lfloor x ^ 2 - 1 \ rfloor$ is even. $$2\int_0^2 \lfloor x^2-1\rfloor dx =\\ 2\int_0^1 \lfloor x^2-1\rfloor dx+2\int_1^{\sqrt{2}} \lfloor x^2-1\rfloor dx +2\int_{\sqrt{2}}^{\sqrt{3}} \lfloor x^2-1\rfloor dx + 2\int_{\sqrt{3}}^2 \lfloor x^2-1\rfloor dx$ $
Pero, ¿cómo evaluar esto o me equivoco en el supuesto general?