$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
$\ds{\int_{0}^{\pi/2}{\ln^{2}\pars{\sin\pars{x}}\ln\pars{\cos\pars{x}}\over \sin\pars{x}\cos\pars{x}}\dd x = -\pars{\phantom{^{2}}\pi^{2} \over 4!}^{2}:\ {\large ?}}$
\begin{align} &\int_{0}^{\pi/2}{\ln^{2}\pars{\sin\pars{x}}\ln\pars{\cos\pars{x}}\over \sin\pars{x}\cos\pars{x}}\dd x \\[5mm] = &\ {1 \over 16}\int_{0}^{\pi/2}{\ln^{2}\pars{\sin^{2}\pars{x}}\ln\pars{\cos^{2}\pars{x}}\over \sin^{2}\pars{x}\cos^{2}\pars{x}}\bracks{2\sin\pars{x}\cos\pars{x}}\,\dd x \\[5mm] \stackrel{\sin^{2}\pars{x}\ \mapsto\ x}{=}\,\,\,&\ -\,{1 \over 16}\int_{0}^{1}\ln^{2}\pars{x}\ \overbrace{\bracks{-\,{\ln\pars{1 - x} \over x\pars{1 - x}}}} ^{\ds{\sum_{n = 1}^{\infty}H_{n}\,x^{n}}}\ \,\dd x\qquad\pars{~H_{z}:\ Harmonic\ Number~}\label{1}\tag{1} \\[5mm] = &\ -\,{1 \over 16}\sum_{n = 1}^{\infty}H_{n}\ \overbrace{\int_{0}^{1}\ln^{2}\pars{x}x^{n - 1}\,\dd x} ^{\ds{2 \over \phantom{^{3}}n^{3}}}\ =\ -\,{1 \over 8}\sum_{n = 1}^{\infty}{H_{n} \over n^{3}} \end{align}
$\ds{\sum_{n = 1}^{\infty}{H_{n} \over n^{3}} = {\phantom{^{4}}\pi^{4} \over 72}}$ es un identidad conocida . Ver $\ds{\pars{19}}$ en el enlace citado.
\begin{align} &\int_{0}^{\pi/2}{\ln^{2}\pars{\sin\pars{x}}\ln\pars{\cos\pars{x}}\over \sin\pars{x}\cos\pars{x}}\dd x = -\,{1 \over 8}\,{\phantom{^{4}}\pi^{4} \over 72} = -\,{\phantom{^{4}}\pi^{4} \over 576} = \bbx{-\,\pars{\phantom{^{2}}\pi^{2} \over 4!}^{2}} \end{align}
1 votos
Qué es $$\ln^2(\sin(x))=\ln(\sin(x))^2$$ ou $$\ln(\sin^2(x))$$ ?
5 votos
Es bien sabido que $\ln^2(x)=(\ln(x))^2$
0 votos
¿Es posible utilizar el teorema del residuo para esto?