Desde el autor de la ecuación 13, 14 se puede escribir mediante la inserción de V"(A)=0, Resolviendo para R obtenemos, $$R= \frac{6^{D/4} \sqrt{D}}{\sqrt{-2^{1+\frac{D}{2}} 3^{D/2}+3 2^{1+D} A-3^{1+\frac{D}{2}} A^2}}$$ Ahora la inserción de la V en el artículo de la ecuación (11)$$E= \left(\frac{\pi }{2}\right)^{D/2} R^D V,$$ obtenemos, $$E= \left(\frac{\pi }{2}\right)^{D/2} \left(-\left(\frac{2}{3}\right)^{D/2} A^3+2^{\frac{1}{2} (-4-D)} A^4+A^2 \left(1+\frac{D}{2 R^2}\right)\right) R^D$$ Ahora insertar el valor de R, obtenemos, $$E= \left(-\left(\frac{2}{3}\right)^{D/2} A^3+2^{\frac{1}{2} (-4-D)} A^4+A^2 \left(1+2^{-1-\frac{D}{2}} 3^{-D/2} \left(-2^{1+\frac{D}{2}} 3^{D/2}+3 2^{1+D} A-3^{1+\frac{D}{2}} A^2\right)\right)\right) \left(\frac{6^{D/4} \sqrt{D}}{\sqrt{-2^{1+\frac{D}{2}} 3^{D/2}+3 2^{1+D} A-3^{1+\frac{D}{2}} A^2}}\right)^D \left(\frac{\pi }{2}\right)^{D/2}$$
For $D= 3$ finalmente, $$E= \frac{27 6^{3/4} \left(-\frac{2}{3} \sqrt{\frac{2}{3}} A^3+\frac{A^4}{8 \sqrt{2}}+A^2 \left(1+\frac{-12 \sqrt{6}+48 A-9 \sqrt{3} A^2}{12 \sqrt{6}}\right)\right) \pi ^{3/2}}{\left(-12 \sqrt{6}+48 A-9 \sqrt{3} A^2\right)^{3/2}} \tag{1}$$ la gráfica de la ecuación (1) debe satisfacer el artículo gráfico (FIG 2)
Mi gráfico:
Plot[(27 6^(3/4) (-(2/3) Sqrt[2/3] A^3 + A^4/(8 Sqrt[2]) +A^2 (1 + (-12 Sqrt[6] + 48 A - 9 Sqrt[3] A^2)/( 12 Sqrt[6]))) \[Pi]^(3/2))/(-12 Sqrt[6] + 48 A - 9 Sqrt[3] A^2)^(3/2), {A, 0.5, 2.5}]
Pero el autor tiene,
Salida :
Estoy haciendo mal en la simulación?
A continuación, El autor tiene como esta en la figura 3
`