$\newcommand{\+}{^{\daga}}
\newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, nº 1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\down}{\downarrow}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\isdiv}{\,\left.\a la derecha\vert\,}
\newcommand{\cy}[1]{\left\vert #1\right\rangle}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left (\, nº 1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\vphantom{\large Un}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}
\newcommand{\wt}[1]{\widetilde{#1}}$
$\ds{\mbox{Vamos a}\ {\cal I}\pars{b} \equiv
\int_{-\pi/2}^{\pi/2}{\ln\pars{1 + b\sin\pars{x}} \\sin\pars{x}}
\,\dd x:\ {\large ?}}$ with $\ds{b \in {\mathbb R}\,,\ \verts{b} < 1.\quad}$
$\ds{{\cal I}\pars{0} = 0}$
Con
Weierstrass Sustitución De$\ds{t \equiv \tan\pars{x \over 2}}$:
\begin{align}
{\cal I}'\pars{b}&=\int_{-\pi/2}^{\pi/2}{\dd x \over 1 + b\sin\pars{x}}
=\int_{-1}^{1}{2\,\dd t/\pars{1 + t^{2}} \over 1 + b\bracks{2t/\pars{1 + t^{2}}}}
=2\int_{-1}^{1}{\dd t \over t^{2} + 2bt + 1}
\\[3mm]&=2\int_{-1}^{1}{\dd t \over \pars{t + b}^{2} + 1 - b^{2}}
=2\int_{-1 + b}^{1 + b}{\dd t \over t^{2} + 1 - b^{2}}
\\[3mm]&={2 \over \root{1 - b^{2}}}
\int_{\pars{-1 + b}/\root{1 - b^{2}}}^{\pars{1 + b}/\root{1 - b^{2}}}
{\dd t \over t^{2} + 1}
\\[3mm]&={2 \over \root{1 - b^{2}}}\bracks{%
\arctan\pars{1 + b \over \root{1 - b^{2}}}
-\arctan\pars{-1 + b \over \root{1 - b^{2}}}}
\\[3mm]&={2 \over \root{1 - b^{2}}}\bracks{%
{\pi \over 2} - \arctan\pars{\root{1 - b^{2}} \over 1 + b}
-\arctan\pars{-1 + b \over \root{1 - b^{2}}}}
\\[3mm]&={2 \over \root{1 - b^{2}}}\braces{%
{\pi \over 2} - \overbrace{%
\bracks{\arctan\pars{1 - b \over \root{1 - b^{2}}}
+\arctan\pars{-1 + b \over \root{1 - b^{2}}}}}^{\ds{=\ 0}}}
\\[3mm]&={\pi \over \root{1 -b^{2}}}
\end{align}
Entonces
$$\color{#00f}{\large%
\int_{-\pi/2}^{\pi/2}{\ln\pars{1 + b\sin\pars{x}} \\sin\pars{x}}\,\dd x
=\pi\,\arcsin\pars{b}}
$$