Dado que $$f(x,y)=\tan^{-1}\left(\frac{x+y}{1-xy}\right)$$ Encuentre $f_x(x,y)$
Mi intento,
$$ \begin{aligned} f_x(x,y)&=\frac{(1-xy)(1)-(x+y)(-y)}{(1-xy)^2}\cdot\frac{1}{1+\left(\frac{x+y}{1-xy}\right)^2}\\ &=\frac{1+y^2}{(1-xy)^2+(x+y)^2}\\ &=\frac{1+y^2}{1+y^2+x^2+x^2y^2} \end{aligned} $$
Pero la respuesta dada es $\frac{1}{x^2+1}$ .
¿Cómo?