Vamos a cambiar la ecuación ligeramente (sin pérdida de generalidad) de la escritura $$Bx+C=B(x-1)+(B+C)=D+B(x-1)$$ So, the equations become $$A\log(D)=1$$ $$A\log(D+64B)=75$$ $$A\log(D+99B)=100$$ so, writing differences $$75-1=A\log(D+64B)-A\log(D)=A\big(\log(D+64B)-\log(D)\big)=A \log\Big(1+64\frac BD\Big)$$ $$100-1=A\log(D+99B)-A\log(D)=A\big(\log(D+99B)-\log(D)\big)=A \log\Big(1+99\frac BD\Big)$$ Now, making the ratio $$\frac{74}{99}=\frac{\log\Big(1+64\frac BD\Big) }{\log\Big(1+99\frac BD\Big)}$$ Now, define $\alpha=\frac BD$ and we just have one equation fo solve for $\alpha$ $$\frac{74}{99}=\frac{\log(1+64\alpha) }{\log(1+99\alpha)}$$ which can write $$f(\alpha)=74\log(1+99\alpha)-99\log(1+64\alpha)=0$$ This equation can easily be solved using Newton method using a reasonable starting point $\alpha_0 >\frac{1}{160}$ since this corresponds to the solution of $f'(\alpha)=0$ y corresponde a un máximo de la función.
El uso de $\alpha_0=0.01$, las sucesivas itera son $$\alpha_1=0.020697549639315120708$$ $$\alpha_2=0.017552368652124192289$$ $$\alpha_3=0.017486590789402401622$$ $$\alpha_4=0.017486542504336179435$$ $$\alpha_5=0.017486542504309897026$$ which is the solution for $20$ cifras significativas.
Ahora, el uso de $$74=A \log(1+64\alpha)$$ we then obtain $$A=98.53400808297250480$$ and using $$A\log(D)=1$$ we then obtain $$D=1.0102004538294647697$$ and, finally, using $$\alpha=\frac BD$$ we obtain $$B=0.017664913173762083069$$ As you can notice, we only had to solve one single nonlinear equation in $\alfa$, all the remaining involving very basic calculations. If you really want the value of $C$, just use $B+C=D$ to get $$C=0.9925355406557026866$$
Editar
Solo por curiosidad (no se preocupe : usted se enterará de que pronto), podemos aproximar la función $f(\alpha)$ utilizando un Pade approximant alrededor de $\alpha=0$. Esto daría $$f(\alpha)=\frac{990 \alpha-\frac{21076275 \alpha^2}{323}}{1+\frac{92626 \alpha}{969}}$$ the numerator of which being zero for $\alpha=\frac{1938}{127735}\approx 0.015172$.
Editar
El problema podría ser generalizado. Supongamos que las ecuaciones son $$y_i=A\log(Bx_i+C)$$ Define $D=Bx_1+C$ to write $$y_i=A\log\big(D+B(x_i-x_1)\big)$$ So doing the same $$\frac{y_2-y_1}{y_3-y_1}=\frac{\log\big(1+(x_2-x_1)\alpha\big)}{\log\big(1+(x_3-x_1)\alpha\big)}$$ Solve for $\alfa$ (si existe una solución) y seguir el mismo proceso que el anterior.