Reescritura $$\int_0^1 \int_{-\sqrt{y-y^2}}^{0}(x^2+y^2)\,\text{d}x \, \text{d}y$$ en polar.
Vemos que $-\sqrt{y-y^2}\leq x\leq 0$ .
Si $x=-\sqrt{y-y^2}$ entonces $x^2=y-y^2\to x^2+y^2-y=0\to \color{red}{x^2+(y-\dfrac{1}{2})^2=\dfrac{1}{4}}$
Claramente $0\leq\theta\leq\pi$ . También, $x^2+y^2=y\to r^2\sin^2(\theta)+ r^2\cos^2(\theta)=r\sin(\theta)\to r^2=r\sin(\theta)\to\color{red}{r=\sin(\theta)}$
Por lo tanto, $0\leq r \leq \sin(\theta)$
Así, la nueva integral es
$$\int^\pi_0 \int^{\sin(\theta)}_0 r^2 r \, \mathrm{d}r \, \mathrm{d}\theta=\frac{3\pi}{32}$$
Pero wolfram alpha dice que la integral original en coordenadas cartesianas evalúa a $\dfrac{3\pi}{64}$ ?