$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ \begin{align} \mrm{S}\pars{n} & \equiv {\pars{2n - 1}! \over \root{2}}\,\pars{4 \over \pi}^{2n}\sum_{k = 0}^{\infty} {\pars{-1}^{k\pars{k + 1}/2} \over \pars{2k + 1}^{2n}} \\[5mm] & = \pars{2n - 1}!\,{2^{4n - 1/2} \over \pi^{2n}}\bracks{% \sum_{k = 0}^{\infty}{\pars{-1}^{k} \over \pars{4k + 1}^{2n}} + \sum_{k = 0}^{\infty}{\pars{-1}^{k + 1} \over \pars{4k + 3}^{2n}}} \\[5mm] & = {\root{2} \over 2\pi^{2n}}\bracks{% \pars{2n - 1}!\sum_{k = 0}^{\infty}{\pars{-1}^{k} \over \pars{k + 1/4}^{2n}} - \pars{2n - 1}!\,\sum_{k = 0}^{\infty}{\pars{-1}^{k} \over \pars{k + 3/4}^{2n}}} \label{1}\tag{1} \end{align}
Sin embargo,
\begin{align} &\left.\pars{2n - 1}!\,\sum_{k = 0}^{\infty}{\pars{-1}^{k} \over \pars{k + a}^{2n}}\right\vert_{\ a\ >\ 0} = \pars{2n - 1}!\,\sum_{k = 0}^{\infty}\pars{-1}^{k}\bracks{% {1 \over \Gamma\pars{2n}} \int_{0}^{\infty}t^{2n - 1}\expo{-\pars{k + a}t}\,\dd t} \\[5mm] = &\ \int_{0}^{\infty}t^{2n - 1}\expo{-at}\sum_{k = 0}^{\infty} \pars{-\expo{-t}}^{k}\,\dd t = \int_{0}^{\infty}t^{2n - 1}\expo{-at}\,{1 \over 1 + \expo{-t}}\,\dd t \label{2}\tag{2} \\[5mm] = &\ \bbx{\ds{4^{-n}\,\Gamma\pars{2n}\bracks{% \zeta\pars{2n,{a \over 2}} - \zeta\pars{2n,{a + 1 \over 2}}}}} \end{align}
La última integral, en \eqref{2}, se evalúa directamente expandiendo $\ds{1 \over 1 + \expo{-t}}$ en los poderes de $\ds{\expo{-t}}$ . La expresión \eqref{1} se reduce a:
\begin{align} \mrm{S}\pars{n} & \equiv {\pars{2n - 1}! \over \root{2}}\,\pars{4 \over \pi}^{2n}\sum_{k = 0}^{\infty} {\pars{-1}^{k\pars{k + 1}/2} \over \pars{2k + 1}^{2n}} \\[5mm] & = \bbx{\ds{{\root{2} \over 2}\,{\Gamma\pars{2n} \over \pars{2\pi}^{2n}}\bracks{% \zeta\pars{2n,{1 \over 8}} - \zeta\pars{2n,{5 \over 8}} - \zeta\pars{2n,{3 \over 8}} + \zeta\pars{2n,{7 \over 8}}}}} \end{align}