Pregunta: Encontrar el rango de $x$ para la convergencia de la serie$$\sum_{n=1}^{\infty} \frac{1}{\left(-3\right)^{n+2}} \frac{\left(4x-12\right)^{n}}{n^{2}+1}$$
MI Enfoque: Por $n$th término de la divergencia de la prueba, $$\lim_{n\rightarrow\infty} \frac{1}{\left(-3\right)^{n+2}} \frac{\left(4x-12\right)^{n}}{n^{2}+1}=0 \Longleftrightarrow |4x-12|<1\Longleftrightarrow\frac{11}{4}<x<\frac{13}{4},$$ no en las opciones.
Editar
Respuestas
¿Demasiados anuncios?El uso de Cauchy raíz prueba de que hemos:$$\lim_{n\to\infty}|a_n|^{\frac{1}{n}}=\lim_{n\to\infty}\frac{1}{3^{1+\frac{2}{n}}}|4x-12|\frac{1}{(n^2+1)^{\frac{1}{n}}}=\frac{1}{3}|4x-12|$$then for $|4x-12|<3$ the series converges and for $|4x-12|>3$ it diverges. Also for $|4x-12|=3$ we have:$$\sum_{n=1}^{\infty}\frac{1}{\left(-3\right)^{n+2}}\frac{\left(4x-12\right)^{n}}{n^{2}+1}=\sum_{n=1}^{\infty}\frac{1}{\left(-3\right)^{n+2}}\frac{1}{n^{2}+1}$$or$$\sum_{n=1}^{\infty}\frac{1}{\left(-3\right)^{n+2}}\frac{\left(4x-12\right)^{n}}{n^{2}+1}=\sum_{n=1}^{\infty}\frac{1}{3^{n+2}}\frac{1}{n^{2}+1}$$which converges in both cases. Then the domain is $|4x-12|\le 3\2.25\le x\le 3.75$
$$\sum_{n=1}^{\infty}\frac{1}{\left(-3\right)^{n+2}}\frac{\left(4x-12\right)^{n}}{n^{2}+1}=\sum_{n=1}^{\infty}\frac{1}{\left(9\right)}\frac{\left(4-\frac{4x}{3}\right)^{n}}{n^{2}+1}$$ según Cauchy raíz de la prueba , obtenemos $$|4-\frac{4x}{3}|\leqslant 1$$ así $$\frac{9}{4}\leqslant x\leqslant \frac{15}{4}$$