Es conocido, que
$$\operatorname{erfc}(-x)+\operatorname{erfc}(x) = 2.\tag1$$
así
$$I=\int\limits_{-\infty}^0 \log\left(\frac{1}{2}\operatorname{erfc}(x)\right)\mathrm dx
= \int\limits_{-\infty}^0 \log\left(1-\frac{1}{2}\operatorname{erfc} (x)\right)\mathrm dx
=\int\limits_0^\infty \log\left(1-\frac{1}{2}\operatorname{erfc}(x)\right)\mathrm dx,$$
o, usando la serie de Maclaurin para el logaritmo en la forma de
$$\log(1-x)=-\sum\limits_{n=1}^{\infty}\dfrac{x^n}n,\tag2$$
$$I=-\sum\limits_{n=1}^{\infty}\dfrac1{2^n n} \int\limits_0^\infty\operatorname{erfc}^n(x)\,\mathrm dx.\tag3$$
en
$$\begin{align}
&I_1 = \int\limits_0^\infty\operatorname{erfc}(x)\,\mathrm dx = \dfrac1{\sqrt\pi}\approx0.56418\,95835\,47756,\\[4pt]
&I_2 = \int\limits_0^\infty\operatorname{erfc}^2(x)\,\mathrm dx = \dfrac{2-\sqrt2}{\sqrt\pi}\approx0.33049\,46062\,92647,\\[4pt]
&I_n=\int\limits_0^\infty\operatorname{erfc}^n(x)\,\mathrm dx
= \operatorname{erfc}^{n}(x)\cdot x\Bigg|_0^\infty
-\dfrac{2n}{\sqrt\pi}\int\limits_0^\infty x e^{-x^2}\operatorname{erfc}^{n-1}(x)\,\mathrm dx
= -\dfrac{2n}{\sqrt\pi}\int\limits_0^\infty x e^{-x^2}\operatorname{erfc}^{n-1}(x)\,\mathrm dx\\[4pt]
&= \dfrac{n}{\sqrt\pi}\int\limits_0^\infty \operatorname{erfc}^{n-1}(x)\,\mathrm d e^{-x^2}
= \dfrac{n}{\sqrt\pi}\operatorname{erfc}^{n-1}(x)\,e^{-x^2} \Bigg|_0^\infty
- \dfrac{2n(n-1)}\pi \int\limits_0^\infty e^{-2x^2}\operatorname{erfc}^{n-2}(x)\,\mathrm dx\\[4pt]
&I_n = \dfrac{n}{\sqrt\pi} - \dfrac{2n(n-1)}\pi \int\limits_0^\infty e^{-2x^2}\operatorname{erfc}^{n-2}(x)\,\mathrm dx,\\
&I_n= \dfrac{n}{\sqrt\pi} + \dfrac{n(n-1)}{\sqrt{2\pi}} \int\limits_0^\infty \operatorname{erfc}^{n-2}(x)\,\mathrm d\operatorname{erf}(x\sqrt2)\\[4pt]
&= \dfrac{n}{\sqrt\pi} + \dfrac{n(n-1)}{\sqrt{2\pi}}\operatorname{erfc}^{n-2}(x)\operatorname{erf}(x\sqrt2)\Bigg|_{0}^{\infty}
+ \dfrac{n(n-1)(n-2)\sqrt2}\pi\int\limits_0^\infty e^{-x^2}\operatorname{erf}(x\sqrt2)\operatorname{erfc}^{n-3}(x)\,\mathrm dx\\[4pt]
&= \dfrac{n}{\sqrt\pi} - \dfrac{n(n-1)(n-2)\sqrt2}\pi\int\limits_0^\infty e^{-x^2}\operatorname{erf}(x\sqrt2)\operatorname{erfc}^{n-3}(x)\,\mathrm dx,\\[4pt]
&I_3 = \dfrac{3}{\sqrt\pi} - \dfrac{12}\pi \int\limits_0^\infty e^{-2x^2}\operatorname{erfc}(x)\,\mathrm dx
= \dfrac{3}{\sqrt\pi} - \dfrac{6\sqrt2}{\pi\sqrt\pi}\arctan\sqrt2\approx 0.23681\ 21373\ 68199
\end{align}$$
(ver también Wolfram Alpha).
Cálculos numéricos confirmar la corrección de la fórmula de $(3).$
Pero no fue posible obtener una forma cerrada de $I_n$ para $n>3.$
Por otro lado, la integración de la cuestión de la integral por partes da
$$\begin{align}
&I=\int\limits_0^\infty \log\left(1-\frac12\operatorname{erfc}(x)\right)\mathrm dx
= \log\left(1-\frac12\operatorname{erfc}(x)\right)\cdot x\Bigg|_0^\infty
-\frac1{\sqrt\pi}\int\limits_0^\infty \dfrac{xe^{-x^2}\,\mathrm dx}{1-\frac12\operatorname{erfc}(x)}\\[4pt]
&=-\frac2{\sqrt\pi}\int\limits_0^\infty \dfrac{xe^{-x^2}\,\mathrm dx}{1 +\operatorname{erf}(x)}
=\frac1{\sqrt\pi}\int\limits_0^\infty \dfrac{\mathrm de^{-x^2}}{1+\operatorname{erf}(x)}\\[4pt]
&=\frac1{\sqrt\pi} \dfrac{e^{-x^2}}{\left(1+\operatorname{erf}(x)\right)}\Bigg|_0^\infty
+\frac2\pi\int\limits_0^\infty \dfrac{\mathrm e^{-2x^2}}{\left(1+\operatorname{erf}(x)\right)^2}\mathrm dx\
=\frac2{\pi}\int\limits_0^\infty \dfrac{\mathrm e^{-2x^2}}{\left(1+\operatorname{erf}(x)\right)^2}\mathrm dx-\frac1{\sqrt\pi}\\[4pt]
&=\frac1{\sqrt{2\pi}}\int\limits_0^\infty \dfrac{\mathrm d\operatorname{erf}(x\sqrt2)}{\left(1+\operatorname{erf}(x)\right)^2}
-\frac1{\sqrt\pi}\\
&=\frac1{\sqrt{2\pi}}\dfrac{\operatorname{erf}(x\sqrt2)}{\left(1+\operatorname{erf}(x)\right)^2}\Bigg|_0^\infty
+\frac1{\sqrt{2\pi}}\cdot2\cdot\frac2{\sqrt\pi}\int\limits_0^\infty \dfrac{e^{-x^2}\operatorname{erf}(x\sqrt2)}{\left(1+\operatorname{erf}(x)\right)^3}\,\mathrm dx
-\frac1{\sqrt\pi}\\[4pt]
&=\frac{2\sqrt2}\pi\int\limits_0^\infty \dfrac{e^{-x^2}\operatorname{erf}(x\sqrt2)}{\left(1+\operatorname{erf}(x)\right)^3}\,\mathrm dx-\frac1{\sqrt\pi}+\frac1{4\sqrt{2\pi}}.\\[4pt]
\end{align}$$
Binomio de descomposición en forma de
$$\dfrac1{(1-y)^{m+1}} = \sum_{n=m}^{\infty}\binom nm y^{n-m}\tag4$$
permite el más transformaciones en la forma de
$$\begin{align}
&I = \frac 1{2\pi\sqrt2}\int\limits_0^\infty \dfrac{e^{-x^2}\operatorname{erf}(x\sqrt2)}{\left(1-\frac12\operatorname{erfc} x\right)^3}\,\mathrm dx-\frac1{\sqrt\pi}+\frac1{4\sqrt{2\pi}}\\[4pt]
& = \frac 1{2\pi\sqrt2}\int\limits_0^\infty e^{-x^2}\operatorname{erf}(x\sqrt2)\sum_{n=2}^{\infty}\dfrac{n(n-1)}{2^{n-2}}\,\operatorname{erfc}^{n-2} x\,\mathrm dx-\frac1{\sqrt\pi}+\frac1{4\sqrt{2\pi}}\\[4pt]
& = \frac 1{2\pi\sqrt2}\sum_{n=0}^{\infty}\dfrac{(n+1)(n+2)}{2^n}\int\limits_0^\infty e^{-x^2}\operatorname{erf}(x\sqrt2)\,\operatorname{erfc}^n x\,\mathrm dx-\frac1{\sqrt\pi}+\frac1{4\sqrt{2\pi}},
\end{align}$$
$$I = -\frac1{\sqrt\pi}+\frac1{4\sqrt{2\pi}} + \dfrac{\arctan\sqrt2}{2\pi\sqrt{2\pi}}+\frac 1{2\pi\sqrt2}\sum_{n=1}^{\infty}\dfrac{(n+1)(n+2)}{2^n}J_n,\tag5$$
donde
$$J_n=\int\limits_0^\infty e^{-x^2}\operatorname{erf}(x\sqrt2)\,\operatorname{erfc}^n x\,\mathrm dx\tag6$$
(ver también Wolfram Alpha).
Además, se pueden utilizar las presentaciones
$$\begin{align}
&I = \frac1{\sqrt\pi}\int\limits_0^\infty \dfrac{\mathrm d(e^{-x^2})}{1+\operatorname{erfc}(x)}
= -\frac1{\sqrt\pi}\int\limits_0^1 \dfrac{\mathrm dz}{1+\operatorname{erf}(\sqrt{-\log z})},
\end{align}$$
en
$$\dfrac1{1+\operatorname{erf}\sqrt{-\log \dfrac{\sqrt\pi y}2}} =\dfrac1{1+y}\left(1+\dfrac\pi{12}\dfrac{y^3}{1+y}\left(1+\dfrac\pi{120}\dfrac{y^3-9y^2}{1+y}\right)\right)+\dots$$
(ver también Wolfram Alpha).
Sin embargo, la forma cerrada, no se obtuvo.