En el interior del triángulo ABC tres son los círculos con radio $r_1$, $r_2$, y $r_3$ cada uno de los cuales es tangente a dos lados del triángulo y a la circunferencia inscrita con radio r. Todos $r$, $r_1$, $r_2$, y $r_3$ son distintos cuadrado perfecto enteros. Encontrar el valor más pequeño de inradius $r$.
Respuestas
¿Demasiados anuncios?Para tipográfico de conveniencia (y la reducción de desorden visual) en la siguiente, yo escribo "$A_2$", "$B_2$", "$C_2$" para la mitad de los ángulos "$A/2$", "$B/2$", "$C/2$".
Deje $P$ ser el incentro del triángulo con el radio de $r =: s^2$; y $P_1$, $P_2$, $P_3$ ser los centros de los círculos con los respectivos radios $r_1 =: s_1^2$, $r_2 =: s_2^2$, $r_3 =: s_3^2$.
Si $Q$ es el punto de tangencia de la circunferencia inscrita con $AB$, $\triangle APQ$ tiene un ángulo recto en $Q$, y tenemos $|AP| = \frac{r}{\sin A_2}$. Con $Q_1$ el correspondiente punto de tangencia de la creación de $\triangle AP_1Q_1$, tenemos $$\frac{r_1}{r} = \frac{|AP_1|}{|AP|} = \frac{|AP|-r-r_1}{|AP|} = \frac{r-(r+r_1)\sin A_2}{r}$$ así que $$\sin A_2 = \frac{r-r_1}{r+r_1} = \frac{s^2 - s_1^2}{s^2+s_1^2}$$ Asimismo, $$\sin B_2 = \frac{s^2-s_2^2}{s+s_2^2} \qquad \sin C_2 = \frac{s^2-s_3^2}{s+s_3^2}$$ de dónde $$\cos B_2 = \frac{2 s s_2}{s^2+s_2^2} \qquad \cos C_2 = \frac{2 s s_3}{s^2+s_3^2}$$
(Note: We know the cosines of the half-angles must be non-negative.)
Now, $A_2 + B_2 + C_2 = \pi_2$, so that
$$\begin{align} \sin A_2 &= \cos(B_2+C_2) \\ \sin A_2 &= \cos B_2 \cos C_2 - \sin B_2 \sin C_2 \\ \frac{s^2-s_1^2}{s^2+s_1^2} &= \frac{4 s^2 s_2 s_3 - ( s^2 - s_2^2)( s^2 - s_3^2)}{(s^2+s_2^2)(s^2+s_3^2)} \end{align}$$
Thus,
$$2 s^2 \left( s^2 - s_1 s_2 - s_2 s_3 - s_3 s_1 \right) \left( s^2 + s_1 s_2 - s_2 s_3 + s_3 s_1 \right) = 0$$
and we have
$$s^2 = s_1 s_2 + s_2 s_3 + s_3 s_1 \qquad \text{or} \qquad - s_1 s_2 + s_2 s_3 - s_3 s_1$$
As the latter option is clearly less than $\max\{s_1^2, s_2^2, s_3^2\}$, whereas $s^2$ must exceed that value (the incircle is bigger than the other three), we are left to solve the Diophantine equation
$$s^2 = s_1 s_2 + s_2 s_3 + s_3 s_1$$
in distinct positive integers dominated by $s$. One solution (found via Mathematica's FindInstance
function) is
$$(s,s_1,s_2,s_3) = (9, 7, 6, 3)$$
which (approximately) corresponds to an $106.26^\circ$-$45.24^\circ$-$28.5^\circ$ triangle. No guarantees that this minimizes $s$ (and thus $r$).
Me las arreglé para obtener algunas relaciones entre el$r,r_1,r_2,r_3$$a,b,c$. He utilizado sólo estándar de la geometría de las herramientas y no voy a dar los detalles por ahora...
Las relaciones son: (I considerar $r_1$ el círculo que no es tangente al lado de la $a$, y lo mismo para $r_2,b$$r_3,c$)
$$ p-a =2\sqrt{r_1r} \frac{r}{r-r_1}$$ (construcción de symilarly los otros dos)
Desde aquí se puede construir un relatioin entre el$r,r_1,r_2,r_3$, de la siguiente manera:
$$ r=\frac{S}{p}=\sqrt{\frac{(p-a)(p-b)(p-c)}{p}} $$ y sustituyendo tenemos $$ r= \sqrt{\displaystyle \frac{\frac{8\sqrt{r_1r_2r_3}r^4\sqrt{r}}{(r-r_1)(r-r_2)(r-r_3)}}{2\sqrt{r_1r}\frac{r}{r-r_1}+2\sqrt{r_2r}\frac{r}{r-r_2}+2\sqrt{r_3r}\frac{r}{r-r_3}}}. $$
Aquí usted puede ser capaz de utilizar su hipótesis en $r,r_1,r_2,r_3$ a sacar algo de esto.