5 votos

Muestra que$e^{X^2/2} \in L^1$ iff$e^{XY} \in L^1$ iff$e^{|XY|} \in L^1$

deje $X, Y$ dos idénticamente distribuidas (ambos son $\mathcal{N}(0,1)$) variables aleatorias independientes

mostrar que $e^{\frac{X^2}{2}} \in L^1 \iff e^{XY} \in L^1 \iff e^{|XY|} \in L^1$.

mi intento :

1 de equivalencia :

$$\begin{align} \mathbb{E}[e^{XY}] &= \frac{1}{2\pi}\int_{\mathbb{R}}\int_{\mathbb{R}}e^{xy}e^{-\frac{x^2}{2}}e^{-\frac{y^2}{2}}dydx =\frac{1}{2\pi}\int_{\mathbb{R}}e^{-\frac{x^2}{2}}\int_{\mathbb{R}}e^{xy-\frac{y^2}{2}}dydx \\ &=\frac{1}{2\pi}\int_{\mathbb{R}}e^{-\frac{x^2}{2}}\int_{\mathbb{R}}e^{\frac{x^2}{2}}e^{-\frac{(x-y)^2}{2}}dydx \\ &= \frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}}e^{\frac{x^2}{2}}e^{-\frac{x^2}{2}}\int_{\mathbb{R}}\frac{1}{\sqrt{2\pi}}e^{-\frac{u^2}{2}}dudx \\ & = \mathbb{E}[e^{\frac{X^2}{2}}] \end{align} $$

Me refiero a que si esta un poco demuestra que $e^{\frac{X^2}{2}} \in L^1 \iff e^{XY} \in L^1 $

pero algo que me molesta,

debido a $\mathbb{E}[e^{\frac{X^2}{2}}] = \frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}}dx = +\infty$

Q1 :

no podemos simplemente decir que $e^{\frac{X^2}{2}} \in L^1$ es una afirmación falsa, por lo que puede implicar cualquier cosa que deseamos ?

segundo equivalencia : desde el hecho de que $0< e^{XY} \leq e^{|XY|}$

llegamos a la conclusión de que $ e^{|XY|} \in L^1 \implies e^{XY} \in L^1$

$$\begin{align} \mathbb{E}[e^{|XY|}] &= \frac{1}{2\pi}\int_{\mathbb{R}}\int_{\mathbb{R}}e^{|xy|}e^{-\frac{x^2}{2}}e^{-\frac{y^2}{2}}dydx \\ &=\frac{1}{2\pi}\int_{\mathbb{R}}e^{-\frac{x^2}{2}}(\int_{0}^{+\infty}e^{|xy|}e^{-\frac{y^2}{2}}dy +\int_{-\infty}^{0}e^{|xy|}e^{-\frac{y^2}{2}}dy)dx \\ &= \frac{1}{2\pi}[\int_{0}^{+\infty}e^{-\frac{x^2}{2}}(\int_{0}^{+\infty}e^{xy}e^{-\frac{y^2}{2}}dy +\int_{-\infty}^{0}e^{-xy}e^{-\frac{y^2}{2}}dy)dx +\int_{-\infty}^{0}e^{-\frac{x^2}{2}}(\int_{0}^{+\infty}e^{-xy}e^{-\frac{y^2}{2}}dy +\int_{-\infty}^{0}e^{xy}e^{-\frac{y^2}{2}}dy)dx]\\ & \leq \text{Constant}[\mathbb{E}[e^{XY}] + \mathbb{E}[e^{-XY}] ] = \text{Constant}_2[\mathbb{E}[e^{XY}]] \end{align} $$

He utilizado el hecho de que $-X$ e $Y$ son independientes y que $X = -X\, \text{in distribution}$

Q2 :

fue mi intento de demostrar 2º equivalencia correcta ?

gracias !

edit 1 : pic del problema original (en francés) see comment section below for translation

1voto

mathex Puntos 63

$E[e^{XY}|X]$ existe desde $0 \leq e^{XY}$ (que es una extensión de $L^2$ a no negativo variables!!)

Supongamos que no conocemos la distribución de $X$. Y supongamos que $E[e^{\frac{X^2}{2}}]<+\infty$

Observar que:

$$\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}}(\int_{\mathbb{R}}e^{|xy|}e^{-\frac{1}{2}y^2}dy)dP_X(x)=\frac{2}{\sqrt{2\pi}}\int_{\mathbb{R}}e^{\frac{x^2}{2}}(\int_{]0;+\infty[}e^{-\frac{1}{2}(y-|x|)^2}dy)dP_X(x)=\frac{2}{\sqrt{2\pi}}\int_{\mathbb{R}}e^{\frac{x^2}{2}}(\int_{]-|x|;+\infty[}e^{-\frac{1}{2}u^2}du)dP_X(x) \leq \frac{2}{\sqrt{2\pi}}\int_{\mathbb{R}}e^{\frac{x^2}{2}}(\int_{\mathbb{R}}e^{-\frac{1}{2}u^2}du)dP_X(x) \leq 2E[e^{\frac{X^2}{2}}]<+\infty$$

Y, a continuación, la equivalencia!! (el ejercicio es true si la distribución de $X$ es desconocido)

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X