\begin {align} & \int x^{3}\, \sqrt {x^{2} + 1\,}\,{ \rm d}x = \int x^{2}\,{ \rm d} \left [{1 \over 3}\, \left (x^{2} + 1 \right )^{3/2} \right ] \\ [3mm]&= x^{2}\,{1 \over 3} \left (x^{2} + 1 \right )^{3/2} - \int {1 \over 3} \left (x^{2} + 1 \right )^{3/2} \,{ \rm d} \left (x^{2} + 1 \right ) \\ [3mm]&= {1 \over 3}\,x^{2} \left (x^{2} + 1 \right )^{3/2} - {1 \over 3}\,{ \left (x^{2} + 1 \right )^{5/2} \over 5/2} = \left (x^{2} + 1 \right )^{3/2} \left [% {1 \over 3}\,x^{2} - {2 \over 15} \left (x^{2} + 1 \right ) \right ] \\ [3mm]&= \left (x^{2} + 1 \right )^{3/2}\,{3x^{2} - 2 \over 15} \end {align}
$$ \begin{array}{|c|}\hline\\ \color{#ff0000}{\large\quad% \int x^{3}\,\sqrt{x^{2} + 1\,}\,{\rm d}x \color{#000000}{\ =\ } {1 \over 15}\left(3x^{2} - 2\right)\left(x^{2} + 1\right)^{3/2}\ +\ \color{#000000}{\mbox{constant}} \quad} \\ \\ \hline \end{array} $$