Mientras estudiaba en textos de física me doy cuenta de que la diferenciación bajo el signo integral usualmente se introducen sin ningún tipo de comentario sobre las condiciones de los permisos para hacerlo. En ese caso, yo me ocupo de pensar acerca de lo que el autor está asumiendo y habitual del supuesto de hecho en la física que todas las funciones son de clase $C^\infty$, al menos a trozos compactos subconjuntos, a menudo es suficiente para garantizar la liceity libremente commutating la derivada y la integral de signos.
Mientras que el estudio de la derivación de la ley de Ampère de la Biot-Savart ley, algo me ha sorprendido en esta prueba , la cual parece estar en todas partes en línea y en cartaceous textos. De hecho, el campo magnético en un punto de $\mathbf{x}$ es $$\mathbf{B}(\mathbf{x}):=\frac{\mu_0}{4\pi}\iiint_V\mathbf{J}(\mathbf{l})\times\frac{\mathbf{x}-\mathbf{l}}{\|\mathbf{x}-\mathbf{l}\|}d^3l=\frac{\mu_0}{4\pi}\iiint_V\nabla_x\times\left[\frac{\mathbf{J}(\mathbf{l})}{\|\mathbf{x}-\mathbf{l}\|}\right]d^3l$$where I would prove the identity of the integrands at both members by considering the derivatives as... well, ordinary derivatives. I keep Wikipedia's notation except for $\mathbf{x}$, which is more common as a variable, and the norm sign, for which I have always seen $\|\cdot\|$ elsewhere. Then we can notice that the proof uses a differentiation under the integral sign (at $(1)$ below): since $\nabla_x\times\left[\nabla_x\times\left[\frac{\mathbf{J}(\mathbf{l})}{\|\mathbf{x}-\mathbf{l}\|}\right]\right]=\nabla_x\left[\nabla_x\cdot\left[\frac{\mathbf{J}(\mathbf{l})}{\|\mathbf{x}-\mathbf{l}\|}\right]\right]-\nabla^2\left[\frac{\mathbf{J}(\mathbf{l})}{\|\mathbf{x}-\mathbf{l}\|}\right]=\nabla_x\left[\mathbf{J}(\mathbf{l})\cdot\nabla_x\left[\frac{1}{\|\mathbf{x}-\mathbf{l}\|}\right]\right]$ $-\nabla^2\left[\frac{1}{\|\mathbf{x}-\mathbf{l}\|}\right]\mathbf{J}(\mathbf{l})$, where I would calculate the derivatives as ordinarily understood, again, we have that$$\nabla_x\times\mathbf{B}(\mathbf{x})=\nabla_x\times\left[\frac{\mu_0}{4\pi}\iiint_V\nabla_x\times\left[\frac{\mathbf{J}(\mathbf{l})}{\|\mathbf{x}-\mathbf{l}\|}\right]d^3l\right]$$$$=\frac{\mu_0}{4\pi}\iiint_V\nabla_x\times\left[\nabla_x\times\left[\frac{\mathbf{J}(\mathbf{l})}{\|\mathbf{x}-\mathbf{l}\|}\right]\right]d^3l\quad(1)$$$$=\frac{\mu_0}{4\pi}\iiint_V\nabla_x\left[\mathbf{J}(\mathbf{l})\cdot\nabla_x\left[\frac{1}{\|\mathbf{x}-\mathbf{l}\|}\right]\right]-\nabla^2\left[\frac{1}{\|\mathbf{x}-\mathbf{l}\|}\right]\mathbf{J}(\mathbf{l})\,d^3l$$and then the integral is split as licit for Riemann, and Lebesgue, integrals when both integrands are integrable, and the gradient and integral signs are commutated in the first of the two resulting integrals to get$$\frac{\mu_0}{4\pi}\nabla_x\iiint_V\mathbf{J}(\mathbf{l})\cdot\nabla_x\left[\frac{1}{\|\mathbf{x}-\mathbf{l}\|}\right]d^3l-\frac{\mu_0}{4\pi}\iiint_V\nabla^2\left[\frac{1}{\|\mathbf{x}-\mathbf{l}\|}\right]\mathbf{J}(\mathbf{l})\,d^3l$$where the first addend is $\mathbf{0}$ (I do not understand how it is calculated, but that is not the main focus of my question) and where the identity $\nabla^2\left[\frac{1}{\|\mathbf{x}-\mathbf{l}\|}\right]=-4\pi\delta(\mathbf{x}-\mathbf{l})$, where the derivatives are this time intended as derivatives of a distribution, is used to get$$-\frac{\mu_0}{4\pi}\iiint_V\nabla^2\left[\frac{1}{\|\mathbf{x}-\mathbf{l}\|}\right]\mathbf{J}(\mathbf{l})\,d^3l=\mu_0\mathbf{J}(\mathbf{x}).$$ Everything of my reasoning seemed to me to work by assuming $V\subset\mathbb{R}^3$ to be compact and such that $\mathbf{x}\noen V$ and intending the integral $\iiint...d^3l$ a ser una de Riemann (o Lebesgue, que, en ese caso, creo que para ser el mismo) integral, pero en este último paso veo que no era lo que yo pensaba.
¿Cuáles son, entonces, las integrales que aparecen en los cálculos? No pueden ser las integrales de Riemann, tal y como yo lo entiendo, porque entonces debe de ser $\mathbf{x}\notin V$ y, a continuación,$\iiint_V\nabla^2\left[\frac{1}{\|\mathbf{x}-\mathbf{l}\|}\right]\mathbf{J}(\mathbf{l})\,d^3l=\mathbf{0}$, y que no puede ser Lebesgue integrales, ya que, incluso con $\mathbf{x}\in V$, luego $\iiint_V\nabla^2\left[\frac{1}{\|\mathbf{x}-\mathbf{l}\|}\right]\mathbf{J}(\mathbf{l})\,d^3l$ $=\int_{V\setminus\{\mathbf{x}\}}\nabla^2\left[\frac{1}{\|\mathbf{x}-\mathbf{l}\|}\right]\mathbf{J}(\mathbf{l})\,d\mu_{\mathbf{l}}$ $=\mathbf{0}$, incluso si $\mathbf{J}(\mathbf{x})$ es no nulo.
¿Qué otra cosa si no de Riemann o Lebesgue integrales? ¿Por qué es el calculo de la integral y diferencial a los operadores lícito? Si tenemos la intención de que ellos representan funcionales en el contexto del análisis funcional (que es el único que conozco de donde Dirac $\delta$ está definido), que la función de ($\varphi$, el uso de la notación utilizada aquí) es el argumento de la funcional?
O es que uno de esos casos, cuyo conjunto me han dicho que no se vacía, donde los métodos de física, al menos en la didáctica de nivel, no son tan riguroso como las matemáticas requeriría? Doy sinceramente las gracias a cualquier respuesta.