$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove armada]{\displaystyle{#1}}\,}
\newcommand{\llaves}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
$\ds{\left.\vphantom{\Large A}\mrm{f}\pars{x}\right\vert_{\ x\ \en\ \left[0,1\right)} \equiv x + {2x^{3} \más de 1 \times 3} + {2 \times 4x^{5} \más de 1 \times 3 \times 5} +
{2 \times 4 \times 6x^{7} \más de 1 \times 3 \times 5 \7 veces}
+ \cdots:\ {\LARGE ?}}$.
$\underline{\large\texttt{An Explicit Evaluation:}}$
\begin{align}
\left.\vphantom{\Large A}\mrm{f}\pars{x}\right\vert_{\ x\ \in\ \left[0,1\right)} & \equiv
x + \sum_{n = 1}^{\infty}{\pars{\prod_{k = 1}^{n}2k}x^{2n + 1} \over \prod_{k = 1}^{n}\pars{2k + 1}} =
x + \sum_{n = 1}^{\infty}{\pars{2^{n}n!} \over
2^{n}\prod_{k = 1}^{n}\pars{k + 1/2}}\,x^{2n + 1}
\\[5mm] & =
x + \sum_{n = 1}^{\infty}{n! \over
\pars{3/2}^{\large\overline{n}}}\,x^{2n + 1} =
x + \sum_{n = 1}^{\infty}{n! \over
\Gamma\pars{3/2 + n}/\Gamma\pars{3/2}}\,x^{2n + 1}
\\[5mm] & =
x + \sum_{n = 1}^{\infty}n!\bracks{{1 \over \pars{n - 1}!}\,{\Gamma\pars{n}\Gamma\pars{3/2} \over
\Gamma\pars{n + 3/2}}}x^{2n + 1}
\\[5mm] & =
x + \sum_{n = 1}^{\infty}n
\bracks{\int_{0}^{1}t^{n - 1}\pars{1 - t}^{1/2}\,\dd t}x^{2n + 1}
\\[5mm] & =
x + x\int_{0}^{1}{\pars{1 - t}^{1/2} \over t}\
\underbrace{\sum_{n = 1}^{\infty}n\pars{tx^{2}}^{n}}
_{\ds{=\ {tx^{2} \over \pars{1 - tx^{2}}^{2}}}}\ \dd t
\\[5mm] & =
x + x^{3}\
\underbrace{\int_{0}^{1}{\root{1 - t} \over
\pars{1 - tx^{2}}^{2}}\,\dd t}
_{\ds{=\ {-x + \arcsin\pars{x}/\root{1 - x^{2}} \over x^{3}}}} =
\bbx{\arcsin\pars{x} \over \root{1 - x^{2}}}
\end{align}