Llegué sobre la práctica siguiente problema en un libro de la integración:-
$Q.$ Evaluar $$I=\int \frac{\sin ^3(\theta/2)}{\cos(\theta/2)\sqrt{\cos^3\theta+\cos^2\theta+\cos \theta}}d\theta$$ To do this, first I substituted $\cos(\theta/2)=u \implica \frac {-1}{2}\sin (\frac{\theta}2)\ d\theta=du \implica \sin^3 (\frac{\theta}2)d\theta=-2(1-u^2)\ du$. This gives $$\begin{align}I&=\int \frac{2(u^2-1)\ du}{u\sqrt{(2u^2-1)^3+(2u^2-1)^2+(2u^2-1)}}\\&=\frac 12\int \frac {(u^2-1)(4u\ du)}{u^2\sqrt{(2u^2-1)^3+(2u^2-1)^2+(2u^2-1)}}\end{align}$$ Now substitute $z=2u^2-1 \implica dz=4u\ du$. We have $u^2=\frac {z+1}2 \implica u^2-1=\frac {z-1}2$. Hence $$\begin{align}I&=\int \frac {{{z-1}\over2}\ dz}{(\frac {z+1}2)\sqrt{z^3+z^2+z}}\\&=\int \frac{(z-1)\ dz}{(z+1)\sqrt{z^3+z^2+z}}\\&=\int \left[\frac{1}{\sqrt{z^3+z^2+z}}-\frac2{(z+1)\sqrt{z^3+z^2+z}}\right]\ dz\end{align}$$ I don't know how to proceed further. Some hints would be appreciated. Is there any easier way to integrate the given expression? I also tried substituting $\tan (\theta/2)=u$, pero se vuelve aún más complicada de lo que he mostrado aquí.