$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove armada]{\displaystyle{#1}}\,}
\newcommand{\llaves}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
&\bbox[10px,#ffd]{\sum_{k = 1}^{\infty}{6 \over k\pars{k + 1}\pars{k+ 3}}} =
6\sum_{k = 1}^{\infty}2\int_{0}^{1}\dd u_{1}\int_{0}^{u_{1}}\dd u_{2}\,
{1 \over \pars{k + u_{1} + 2u_{2}}^{3}}
\\[5mm] = &\
12\int_{0}^{1}\dd u_{1}\int_{0}^{u_{1}}\dd u_{2}\,\
\underbrace{\sum_{k = 1}^{\infty}{1 \over \pars{k + u_{1} + 2u_{2}}^{3}}}
_{\ds{-\Psi''\pars{1 + u_{1} + 2u_{2}}/2}}\qquad
\pars{~\Psi:\ Digamma\ Function~}
\\[5mm] = &\
-3\int_{0}^{1}\dd u_{1}\bracks{\Psi\, '\pars{1 + 3u_{1}} -
\Psi\, '\pars{1 + u_{1}}}
\\[5mm] = &\
-3\bracks{{1 \over 3}\,\Psi\pars{1 + 3u_{1}} - \Psi\pars{1 + u_{1}}}_{\ 0}^{ 1} =
-\
\Psi\pars{4} + 3\Psi\pars{2} + \Psi\pars{1} - 3\Psi\pars{1}
\\[5mm] = &\
3\ \underbrace{\bracks{\Psi\pars{2} - \Psi\pars{1}}}_{\ds{=\ 1}}\ -\
\underbrace{\bracks{\Psi\pars{4} - \Psi\pars{1}}}
_{\ds{=\ {11 \over 6}}}\ =\ \bbx{7 \over 6}
\end{align}
Tenga en cuenta que $\quad\left\{\begin{array}{rclcl}
\ds{\Psi\pars{2}} & \ds{=} & \ds{\Psi\pars{1} + {1 \over 1}} &&
\\[1mm]
\ds{\Psi\pars{3}} & \ds{=} & \ds{\Psi\pars{2} + {1 \over 2}}
& \ds{=} & \ds{\Psi\pars{1} + {3 \over 2}}
\\[1mm]
\ds{\Psi\pars{4}} & \ds{=} & \ds{\Psi\pars{3} + {1 \over 3}}
& \ds{=} & \ds{\Psi\pars{1} + {11 \over 6}}
\end{array}\right.$