Tengo el siguiente conjunto de resultados obtenidos en uno de los factores (peso al nacer) con diferentes niveles y sus correspondientes índices de Probabilidades de supervivencia. Estoy usando el primer nivel (<1.25) como el nivel de referencia:
El peso al nacimiento (kg):
Levels Number/level Odds Ratio
<1.25 1615 1.00
1.25-1.46 1617 1.37
1.46-1.65 1462 1.25
1.65-1.87 1632 1.68
>1.87 1466 2.35
A partir de este resultado, estoy tratando de estimar, mediante el uso de la O, el número aproximado de los recién nacidos que sobreviven en cada nivel.
Hay maneras de que esto puede lograrse mediante la R?
En un cálculo separado, el número real de supervivencia de cada nivel se muestra a continuación:
Levels Number/level Odds Ratio Actual number survived
<1.25 1615 1.00 1088
1.25-1.46 1617 1.37 1346
1.46-1.65 1462 1.25 1238
1.65-1.87 1632 1.68 1447
>1.87 1466 2.35 1351
EDITAR: Lo anterior es sólo uno de los factores independientes de mi modelo.
mod <- glm(formula = surv ~ as.factor(var1) + as.factor(var2)+...as.factor(varn)+family = binomial(link = "logit"), data=mydf)
summary(mod)
glm(formula = surv ~ as.factor(season) + as.factor(bwt5) + as.factor(prectem5) +
as.factor(pcscore) + as.factor(pindx5) + as.factor(presp2) +
as.factor(ppscore) + as.factor(mtone2) + as.factor(fos) +
as.factor(psex) + as.factor(pscolor) + as.factor(pshiv) +
as.factor(backfat5) + as.factor(srect2) + as.factor(gest3) +
as.factor(int3) + as.factor(agit) + as.factor(tacc), family = binomial(link = "logit"),
data = lesna)
Deviance Residuals:
Min 1Q Median 3Q Max
-3.0562 0.3120 0.4478 0.5929 1.9412
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.441842 0.290536 4.963 6.95e-07 ***
as.factor(season)2 -1.064053 0.107666 -9.883 < 2e-16 ***
as.factor(bwt5)2 0.314332 0.099776 3.150 0.001631 **
as.factor(bwt5)3 0.223824 0.110566 2.024 0.042935 *
as.factor(bwt5)4 0.524586 0.120182 4.365 1.27e-05 ***
as.factor(bwt5)5 0.854196 0.138993 6.146 7.97e-10 ***
as.factor(prectem5)2 0.745025 0.094238 7.906 2.66e-15 ***
as.factor(prectem5)3 0.856777 0.098326 8.714 < 2e-16 ***
as.factor(prectem5)4 0.997219 0.111529 8.941 < 2e-16 ***
as.factor(prectem5)5 0.930925 0.120052 7.754 8.88e-15 ***
as.factor(pcscore)2 0.384534 0.137564 2.795 0.005185 **
as.factor(pcscore)3 0.668390 0.154608 4.323 1.54e-05 ***
as.factor(pindx5)2 0.243485 0.101755 2.393 0.016718 *
as.factor(pindx5)3 0.262779 0.108809 2.415 0.015733 *
as.factor(pindx5)4 0.595672 0.118124 5.043 4.59e-07 ***
as.factor(pindx5)5 0.467277 0.120401 3.881 0.000104 ***
as.factor(presp2)2 -0.286214 0.126012 -2.271 0.023127 *
as.factor(ppscore)2 -0.246369 0.093568 -2.633 0.008462 **
as.factor(mtone2)2 -0.482397 0.118218 -4.081 4.49e-05 ***
as.factor(fos)2 -0.255652 0.075749 -3.375 0.000738 ***
as.factor(psex)2 0.182437 0.066964 2.724 0.006442 **
as.factor(pscolor)2 -0.694197 0.282069 -2.461 0.013852 *
as.factor(pshiv)2 -0.241515 0.080792 -2.989 0.002796 **
as.factor(backfat5)2 -0.309427 0.104176 -2.970 0.002976 **
as.factor(backfat5)3 -0.004152 0.108669 -0.038 0.969523
as.factor(backfat5)4 0.013233 0.103491 0.128 0.898257
as.factor(backfat5)5 -0.221935 0.104639 -2.121 0.033926 *
as.factor(srect2)2 -0.236981 0.104962 -2.258 0.023960 *
as.factor(gest3)2 0.207375 0.106065 1.955 0.050562 .
as.factor(gest3)3 0.904959 0.191307 4.730 2.24e-06 ***
as.factor(int3)2 -0.204870 0.127674 -1.605 0.108573
as.factor(int3)3 -1.271092 0.388924 -3.268 0.001082 **
as.factor(agit)2 -0.496856 0.157553 -3.154 0.001613 **
as.factor(agit)3 -0.360247 0.148520 -2.426 0.015284 *
as.factor(tacc)2 -0.282180 0.090556 -3.116 0.001833 **
as.factor(tacc)3 -0.429249 0.082520 -5.202 1.97e-07 ***
---
Signif. codes: 0 ‘***' 0.001 ‘**' 0.01 ‘*' 0.05 ‘.' 0.1 ‘ ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 7096.2 on 7791 degrees of freedom
Residual deviance: 6143.0 on 7756 degrees of freedom
AIC: 6215
Number of Fisher Scoring iterations: 5
exp(mod$coefficients) # odds ratios
(Intercept) as.factor(season)2 as.factor(bwt5)2
4.2284770 0.3450544 1.3693441
as.factor(bwt5)3 as.factor(bwt5)4 as.factor(bwt5)5
1.2508506 1.6897596 2.3494840
as.factor(prectem5)2 as.factor(prectem5)3 as.factor(prectem5)4
2.1064944 2.3555559 2.7107340
as.factor(prectem5)5 as.factor(pcscore)2 as.factor(pcscore)3
2.5368547 1.4689297 1.9510940
as.factor(pindx5)2 as.factor(pindx5)3 as.factor(pindx5)4
1.2756866 1.3005395 1.8142499
as.factor(pindx5)5 as.factor(presp2)2 as.factor(ppscore)2
1.5956440 0.7511016 0.7816335
as.factor(mtone2)2 as.factor(fos)2 as.factor(psex)2
0.6173022 0.7744113 1.2001382
as.factor(pscolor)2 as.factor(pshiv)2 as.factor(backfat5)2
0.4994756 0.7854368 0.7338673
as.factor(backfat5)3 as.factor(backfat5)4 as.factor(backfat5)5
0.9958568 1.0133207 0.8009678
as.factor(srect2)2 as.factor(gest3)2 as.factor(gest3)3
0.7890065 1.2304445 2.4718305
as.factor(int3)2 as.factor(int3)3 as.factor(agit)2
0.8147530 0.2805250 0.6084405
as.factor(agit)3 as.factor(tacc)2 as.factor(tacc)3
0.6975039 0.7541382 0.6509975
exp(coef(mod)) #exponentiated coefficients
exp(confint(mod)) # 95% CI
EJECUTAR EL SCRIPT SIN type="respuesta"
> (pred1s <- predict(mod,newdata=as.data.frame(with(lesna,list(season=1,bwt5=1,
+ prectem5=1,pcscore=1,pindx5=1,presp2=1,ppscore=1,mtone2=1 .... [TRUNCATED]
1
1.441842
EJECUTANDO EL SCRIPT type="respuesta":
> (pred1s <- predict(mod,newdata=as.data.frame(with(lesna,list(season=1,bwt5=1,
+ prectem5=1,pcscore=1,pindx5=1,presp2=1,ppscore=1,mtone2=1 .... [TRUNCATED]
1
0.8087397