12 votos

Cómo probar que$\int_{0}^{\infty}\ln^2(x)\sin(x^2)dx=\frac{1}{32}\sqrt{\frac{\pi}{2}}(2\gamma-\pi+\ln16)^2$

Wolfram Alpha proporciona

$$\int_{0}^{\infty}\ln^2(x)\sin(x^2)dx=\frac{1}{32}\sqrt{\frac{\pi}{2}}(2\gamma-\pi+\ln16)^2\tag{1}$$

Pero no he descubierto la manera de verificar este resultado.

Sé Frullani Integral de $$\ln(x)= \int_{0}^{\infty}\frac{e^{-t}-e^{-xt}}{t}dt$$ También sé $$\int_{0}^{\infty}\sin(x^2)~dx=\frac{1}{2}\int_{0}^{\infty}x^{-1/2}\sin(x)~dx$$ A continuación, $$\begin{align} \int_{0}^{\infty}\ln^2(x)\sin(x^2)dx&=\int_{0}^{\infty}\left(\int_{0}^{\infty}\frac{e^{-t}-e^{-xt}}{t}dt\right)\left(\int_{0}^{\infty}\frac{e^{-n}-e^{-xn}}{n}dn\right)\sin(x^2)~dx\\ &=\frac{1}{2}\int_{0}^{\infty}\left(\int_{0}^{\infty}\frac{e^{-t}-e^{-xt}}{t}dt\right)\left(\int_{0}^{\infty}\frac{e^{-n}-e^{-xn}}{n}dn\right)\frac{\sin(x)}{\sqrt{x}}dx\\ &=\frac{1}{2}\int_{0}^{\infty}\int_{0}^{\infty}\int_{0}^{\infty}\frac{e^{-t}-e^{-xt}}{t}\frac{e^{-n}-e^{-xn}}{n}\frac{\sin(x)}{\sqrt{x}}~dx~dn~dt\\ &=\frac{1}{2}\int_{0}^{\infty}\frac{1}{t}\int_{0}^{\infty}\frac{1}{n}\int_{0}^{\infty}(e^{-t}-e^{-xt})(e^{-n}-e^{-xn})\frac{\sin(x)}{\sqrt{x}}~dx~dn~dt\\ &=\frac{1}{2}\int_{0}^{\infty}\frac{1}{t}\int_{0}^{\infty}\frac{1}{n}\int_{0}^{\infty}(e^{-t-n}-e^{-xn-t}-e^{-xt-n}+e^{-xt-xn})\frac{\sin(x)}{\sqrt{x}}~dx~dn~dt \end{align}$$ ¿Qué debo hacer a continuación? También hay un caso general

$$\int_{0}^{\infty}\ln^2(x^a)\sin(x^2)dx=\frac{a^2}{32}\sqrt{\frac{\pi}{2}}(2\gamma-\pi+\ln16)^2\tag{2}$$

Pero creo $(2)$ se convierte en fácil de probar si podemos probar $(1)$.

7voto

Zacky Puntos 162

$$I=\int_{0}^{\infty}\ln^2(x)\sin(x^2)dx \overset{x^2=t}=\int_0^\infty \frac{1}{2\sqrt t} \ln^2 (\sqrt t) \sin t dt =\frac18 \int_0^\infty t^{-1/2}\sin t \ln^2 t \,dt$$ Tenga en cuenta que la última integral es el Mellin transformar en $s=\frac12 $ del seno después de ser diferenciadas en dos ocasiones.

Véase, por ejemplo, aquí una prueba: $$\int_0^\infty x^{s-1}\sin x dx= \Gamma(s) \sin\left(\frac{\pi s}{2}\right)$$ $$\Rightarrow I=\frac18\frac{d^2}{ds^2}\Gamma(s) \sin\left(\frac{\pi s}{2}\right)\bigg|_{s=\frac12}$$ No es el fin del mundo para diferenciar que dos veces desde la función digamma viene en nuestra ayuda.

Desde la página de la wiki tenemos: $\Gamma'(x)=\Gamma(x)\psi(x)$ $$\Rightarrow \frac{d}{ds}\Gamma(s) \sin\left(\frac{\pi s}{2}\right)=\Gamma(s)\psi(s)\sin\left(\frac{\pi s}{2}\right) +\frac{\pi}{2}\Gamma(s)\cos\left(\frac{\pi s}{2}\right)$$ $$\Rightarrow \frac{d^2}{ds^2}\Gamma(s) \sin\left(\frac{\pi s}{2}\right)=\frac{d}{ds}\Gamma(s)\left(\psi(s)\sin\left(\frac{\pi s}{2}\right)+\frac{\pi}{2}\cos\left(\frac{\pi s}{2}\right)\right)$$ $$=\Gamma(x)\psi(x)\left(\psi(s)\sin\left(\frac{\pi s}{2}\right)+\frac{\pi}{2}\cos\left(\frac{\pi s}{2}\right)\right)+\Gamma(s)\left(\psi_1(x)\sin\left(\frac{\pi s}{2}\right)+\frac{\pi}{2}\Gamma(s)\cos\left(\frac{\pi s}{2}\right)-\frac{\pi^2}{4}\sin\left(\frac{\pi s}{2}\right)\right)$$ Y ahora establecimiento $s=\frac12$ obtenemos con $\Gamma\left(\frac12\right)=\sqrt{\pi}$, $\psi\left(\frac12 \right)=-\gamma -2\ln 2 $,$\ \psi_1\left(\frac12\right)=\frac{\pi^2}{2}$ el resultado.

5voto

Roger Hoover Puntos 56

Tenemos $$ F(\alpha)=\int_{0}^{+\infty} x^\alpha \sin(x^2)\,dx = \frac{1}{2}\int_{0}^{+\infty} x^{\alpha/2-1}\sin(x)\,dx\\=\frac{1}{2\Gamma(1-\alpha/2)}\int_{0}^{+\infty} \frac{ds}{s^{\alpha/2}(s^2+1)} $$ por las propiedades de la transformada de Laplace. La última integral puede ser calculada a través de la Beta y Gamma funciones, la producción de $$ F(\alpha) = \frac{1}{2}\,\Gamma\left(\frac{1+\alpha}{2}\right)\sin\left(\frac{\pi}{4}(1+\alpha)\right) $$ para cualquier $\alpha$ tal que $\text{Re}(\alpha)\in(-3,1)$. Con el fin de demostrar la reclamación, que sea suficiente para aplicar $\lim_{\alpha\to 0}\frac{d^2}{d\alpha^2}$ a ambos lados de la última identidad y recuperar los valores especiales de $\Gamma,\psi$ e $\psi'$ a $\frac{1}{2}$.

4voto

Franklin P. Dyer Puntos 174

Nos deja volver a escribir la integral como $$\int_0^\infty \ln^2(x)\sin(x^2)dx=\frac{1}{8}\int_0^\infty \frac{\ln^2(x)\sin(x)}{\sqrt{x}}dx$$ Para resolver esta integral, se puede emplear la siguiente identidad, que vale para cualquier $p\in (0,1)$: $$\int_0^\infty x^{p-1}\sin(x)dx=\Gamma(p)\sin(\pi p/2)$$ El valor de la integral puede ser obtenido a partir de esto, diferenciando ambos lados de esta ecuación dos veces con respecto a $p$, moviendo la derivada en el interior de la integral definida en el lado izquierdo, y en uso de las especiales conocidos los valores de la función Digamma.

Esto se puede hacer a mano, pero se requiere una gran cantidad de álgebra y sería mejor dejar a un CAS, como se sugiere en los comentarios.

3voto

clathratus Puntos 35

Solo una generalización de la respuesta de @Zacky

$$F(a)=\int_0^{\infty}\log^2(x^a)\sin(x^2)\mathrm dx$ $ Desde $\log(x^a)=\log(e^{a\log x})=a\log x$ , $$F(a)=a^2\int_0^{\infty}\log^2(x)\sin(x^2)\mathrm dx$ $ $$F(a)=a^2F(1)$ $ Y como mostró @Zacky, $$F(1)=\frac18\mathrm{D}^2_{s=\frac12}\Gamma(s)\sin\frac{\pi s}{2}=\frac1{32}\sqrt{\frac\pi2}(2\gamma-\pi+\log16)^2$ $ Entonces $$F(a)=\frac{a^2}{32}\sqrt{\frac\pi2}(2\gamma-\pi+\log16)^2$ $

Editaré mi respuesta para incluir una prueba mía una vez que encuentre una.

3voto

Skinner927 Puntos 106

Un enfoque alternativo es el de emplear su Truco y transformadas de Laplace para resolver:

\begin{equation} I = \int_0^\infty\ln^2(x)\sin\left(x^2\right)\:dx \end{equation}

Primero nos observar que:

\begin{equation} I = \int_0^\infty\ln^2(x)\sin\left(x^2\right)\:dx = \lim_{k\rightarrow 0^+} \frac{d^2}{dk^2}\int_0^\infty x^k\sin\left(x^2\right)\:dx = \lim_{k\rightarrow 0^+} \frac{d^2}{dk^2} H(k) \end{equation}

Vamos a proceder en la resolución de las $H(k)$. Para ello, se introduce un nuevo parámetro de $'t'$:

\begin{equation} J(t; k) = \int_0^\infty x^k\sin\left(tx^2\right)\:dx \end{equation}

(Esto es permisible a través del Teorema de Convergencia Dominada). Por lo tanto:

\begin{equation} H(k) = \lim_{t\rightarrow 1^+} J(t; k) \end{equation}

Usando el Teorema de Fubini nosotros tomamos la transformada de Laplace con respecto a '$t$'

\begin{align} \mathscr{L}_t\left[J(t;k) \right] &= \int_0^\infty x^k\mathscr{L}_t\left[\sin\left(tx^2\right)\right]\:dx = \int_0^\infty \frac{x^{k + 2}}{s^2 + x^4}\:dx \end{align}

Como puedo abordar aquí podemos encontrar este se convierte en:

\begin{align} \mathscr{L}_t\left[J(t;k) \right] &= \frac{1}{4}\cdot \left(s^2\right)^{\frac{k + 2 + 1}{2} - 1} \cdot B\left(1 - \frac{k + 2 + 1 }{4}, \frac{k + 2 + 1 }{4} \right) = \frac{1}{4} s^{\frac{k - 1}{2}} B\left(1 - \frac{k + 3}{4} , \frac{k + 3}{4}\right) \end{align}

Utilizando la relación entre la Beta y Gamma de la Función podemos encontrar:

\begin{equation} \mathscr{L}_t\left[J(t;k) \right] = \frac{1}{4} s^{\frac{k - 1}{2}} \Gamma\left(1 - \frac{k + 3}{4}\right) \Gamma\left( \frac{k + 3}{4}\right) \end{equation}

El uso de Euler Reflexión Fórmula podemos encontrar:

\begin{equation} \mathscr{L}_t\left[J(t;k) \right] = \frac{1}{4} s^{\frac{k - 1}{2}} \frac{\pi}{\sin\left(\pi\left(\frac{k + 3}{4}\right) \right)} \end{equation}

Tomando la inversa de Laplace Transforma es bastante difícil aquí. Para evaluar recordar que:

\begin{equation} I = \lim_{k\rightarrow 0^+} \frac{d^2}{dk^2} H(k) = \lim_{k\rightarrow 0^+} \frac{d^2}{dk^2}\left[ \lim_{t\rightarrow 1^+} J(t;k)\right] \end{equation}

En este proceso hemos de resolver para $H(k)$ utilizando

\begin{equation} H(k) = \lim_{t\rightarrow 1^+} \mathscr{L}_s^{-1}\left[\mathscr{L}_t\left[J(t; k)\right]\right] \end{equation}

Por lo tanto, nuestra definición de la $I$ se convierte en:

\begin{align} I &= \lim_{k\rightarrow 0^+} \frac{d^2}{dk^2} H(k) = \lim_{k\rightarrow 0^+} \frac{d^2}{dk^2}\left[ \lim_{t\rightarrow 1^+} J(t;k)\right] = \lim_{k\rightarrow 0^+} \frac{d^2}{dk^2}\left[ \lim_{t\rightarrow 1^+} \mathscr{L}_s^{-1}\left[\mathscr{L}_t\left[J(t; k)\right]\right]\right] \\ &= \lim_{t\rightarrow 1^+} \mathscr{L}_s^{-1}\left[ \lim_{k\rightarrow 0^+} \frac{d^2}{dk^2}\mathscr{L}_t\left[J(t; k)\right]\right] = \lim_{t\rightarrow 1^+} \mathscr{L}_s^{-1}\left[ \lim_{k\rightarrow 0^+} \frac{d^2}{dk^2}\left[ \frac{1}{4} s^{\frac{k - 1}{2}} \frac{\pi}{\sin\left(\pi\left(\frac{k + 3}{4}\right) \right)}\right]\right] \end{align}

Porque soy perezoso, he utilizado Wolframalpha para evaluar la segunda derivada en $0$:

\begin{align} I &= \lim_{t\rightarrow 1^+} \mathscr{L}_s^{-1}\left[ \lim_{k\rightarrow 0^+} \frac{d^2}{dk^2}\left[ \frac{1}{4} s^{\frac{k - 1}{2}} \frac{\pi}{\sin\left(\pi\left(\frac{k + 3}{4}\right) \right)}\right]\right] = \lim_{t\rightarrow 1^+} \mathscr{L}_s^{-1}\left[ \frac{\pi}{4}\left( \frac{3\pi^2}{8\sqrt{2}\sqrt{s}} + \frac{\ln^2(s)}{2\sqrt{2}\sqrt{s}} + \frac{\pi\ln(s)}{2\sqrt{2}\sqrt{s}}\right)\right] \\ &= \lim_{t\rightarrow 1^+} \left[ \frac{3\pi^3}{32\sqrt{2}} \mathscr{L}_s^{-1}\left[ \frac{1}{\sqrt{s}}\right] + \frac{\pi}{8\sqrt{2}} \mathscr{L}_s^{-1}\left[ \frac{\ln^2(s)}{\sqrt{s}}\right]+ \frac{\pi^2}{8\sqrt{2}} \mathscr{L}_s^{-1}\left[ \frac{\ln(s)}{\sqrt{s}}\right]\right] \\ &= \lim_{t\rightarrow 1^+} \left[ \frac{3\pi^3}{32\sqrt{2}} \left[ \frac{1}{\sqrt{\pi}\sqrt{t}}\right] + \frac{\pi}{32\sqrt{2}} \left[ \frac{ \left(\psi^{(0)}\left(\frac{1}{2}\right)-\ln(t)\right)^2 -\frac{\pi^2}{2}}{\sqrt{\pi}\sqrt{t}}\right]+ \frac{\pi^2}{16\sqrt{2}} \left[ \frac{ \psi^{(0)}\left(\frac{1}{2}\right)-\ln(t)}{\sqrt{\pi}\sqrt{t}}\right]\right] \\ &= \frac{3\pi^3}{32\sqrt{2}} \left[ \frac{1}{\sqrt{\pi}}\right] + \frac{\pi}{32\sqrt{2}} \left[ \frac{ \psi^{(0)}\left(\frac{1}{2}\right)^2 -\frac{\pi^2}{2}}{\sqrt{\pi}}\right]+ \frac{\pi^2}{16\sqrt{2}} \left[ \frac{ \psi^{(0)}\left(\frac{1}{2}\right)}{\sqrt{\pi}}\right] \end{align}

Tomando nota de que \begin{equation} \psi^{(0)}\left(\frac{1}{2}\right) = -\gamma - 2\ln(2) \end{equation}

Donde $\gamma$ es el de Euler–Mascheroni constante.

Por lo tanto,

\begin{align} I = \frac{3\pi^3}{32\sqrt{2}} \left[ \frac{1}{\sqrt{\pi}}\right] + \frac{\pi}{32\sqrt{2}} \left[ \frac{ \left(\gamma + 2\ln(2)\right)^2 -\frac{\pi^2}{2}}{\sqrt{\pi}}\right]+ \frac{\pi^2}{16\sqrt{2}} \left[ \frac{ \gamma - 2\ln(2)}{\sqrt{\pi}}\right] = \frac{1}{32}\sqrt{\frac{\pi}{2}}(2\gamma-\pi+4\ln2)^2 \end{align}

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X