(Ya que no se ha mencionado aún) La función
$$
P_r(t) = \sum_{n=-\infty}^\infty r^{|n|} e^{int} =\frac{1-r^2}{1-2r\cos t +t^2},\quad0\le r<1, 0\le t\le 2\pi
$$ is called the Poisson kernel. For any continuous function $f:[0,2\pi]\a \Bbb C$ la integral de Poisson
$$
u(r,\theta) = \frac{1}{2\pi i}\int_0^{2\pi} f(t)P_r(\theta-t)\mathrm{d}t\etiqueta{*}
$$ gives the unique solution of the Dirichlet problem $\triángulo u =0, \lim\limits_{r\1^-}u(r,\theta)=f(\theta)$.
Deje $u(r,\theta)=r\cos \theta$. Ya que es una parte real de la analítica de la función $z=r e^{i\theta}$, nos encontramos con que $$\triangle u=0,\ \ \ \lim\limits_{r\to 1^-}u(r,\theta)=\cos \theta.$$ By $\texto{(*)}$ se deduce que
$$
r\cos \theta =\frac{1}{2\pi}\int_0^{2\pi} \frac{\cos t(1-r^2)}{1-2r\cos (t-\theta)+r^2}\mathrm{d}t
$$ for all $0\le r<1$ and $0\le \theta\le 2\pi$. Utilizando el hecho de
$$
\frac{1}{2\pi}\int_0^{2\pi} \frac{1-r^2}{1-2r\cos (t-\theta)+r^2}\mathrm{d}t=\frac{1}{2\pi}\sum_{n=-\infty}^\infty r^{|n|} \int_0^{2\pi}e^{(t-\theta)}\mathrm{d}t =1,
$$ es de la siguiente manera
$$
\frac{1}{2\pi}\int_0^{2\pi} \frac{\left(\cos t-r\cos \theta\right)(1-r^2)}{1-2r\cos (t-\theta)+r^2}\mathrm{d}t =0.
$$ By letting $\theta =0$, obtenemos
$$
\frac{1-r^2}{2\pi }\int_0^{2\pi} \frac{\cos t-r}{1-2r\cos t+r^2}\mathrm{d}t =0,$$
o, equivalentemente,
$$
\int_0^{2\pi} \frac{\cos t-r}{1-2r\cos t+r^2}\mathrm{d}t =0.$$