¿Cómo integrar:
$$I=\int^{\pi/45}_0 \frac{x^2 \ln (1-x)}{1-x^3} dx$$
Mi intento:
$$du=\frac{x^2}{1-x^3}dx ⇒ u=\frac{-1}{3}\ln (1-x^3)$$
$$v= \ln (1-x) ⇒ dv=\frac{-1}{1-x}$$
$$I=\frac{-1}{3}\ln (1-x^3) \ln (1-x)-\int \frac{\ln (1-x^3)}{1-x}\,dx$$
$\ln (1-x^3)=\ln (1-x)+\ln (1+x+x^2)$
$$\int \frac{\ln (1-x^3)}{1-x}\,dx=\int \frac{\ln(1-x)}{1-x}\,dx+\int \frac{\ln (x^2+x+1)}{1-x}\,dx$$
$$I_1=\int \frac{\ln(1-x)}{1-x}\,dx=-\frac{1}{2} \ln^2 (1-x)$$
$$x^2+x+1=\left(x+\frac{1-i\sqrt3}{2}\right)\left(x+\frac{1+i\sqrt3}{2}\right)$$
$$\ln \left(x+\frac{1-i\sqrt3}{2}\right)= \ln (2x+1-i\sqrt 3)- \ln 2=\tan^{-1}-\frac{\sqrt3}{2x+1}-\ln 2$$
$$\ln \left(x+\frac{1+i\sqrt3}{2}\right)= \ln (2x-1+i\sqrt 3)- \ln 2=\tan^{-1}\frac{\sqrt3}{2x-1}-\ln 2$$
$$\int \frac{\ln (x^2+x+1)}{1-x} \,dx=\int \frac{\tan^{-1}-\frac{\sqrt3}{2x+1}}{1-x}\,dx+\int \frac{\tan^{-1}\frac{\sqrt3}{2x-1}}{1-x}\,dx+2 \ln2 \ln (1-x)$$
Alguien puede proceder?