Primero pasamos a coordenadas polares, a saber:
$x = r\cos \theta; \; y = r \sin \theta; \tag 1$
$\dot x = \dot r \cos \theta - r\dot \theta \sin \theta; \tag 2$
$\dot y = \dot r \sin \theta + r \dot \theta \cos \theta; \tag 3$
$\begin{pmatrix} \dot x \\ \dot y \end{pmatrix} = \begin{bmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r\cos \theta \end{bmatrix} \begin{pmatrix} \dot r \\ \dot \theta \end{pmatrix}; \tag 4$
$\begin{bmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r\cos \theta \end{bmatrix}^{-1} = \dfrac{1}{r} \begin{bmatrix} r\cos \theta & r\sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} ; \tag 5$
$\begin{pmatrix} \dot r \\ \dot \theta \end{pmatrix} = \dfrac{1}{r} \begin{bmatrix} r\cos \theta & r\sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}\begin{pmatrix} \dot x \\ \dot y \end{pmatrix}; \tag 6$
$\dot x = (x - y)(1 - x^2 - y^2) = r(\cos \theta - \sin \theta)(1 - r^2); \tag 7$
$\dot y = (x + y)(1 - x^2 - y^2) = r(\cos \theta + \sin \theta)(1 - r^2); \tag 8$
$\begin{pmatrix} \dot r \\ \dot \theta \end{pmatrix} = \dfrac{1}{r} \begin{bmatrix} r\cos \theta & r\sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}\begin{pmatrix} r(\cos \theta - \sin \theta)(1 - r^2) \\ r(\cos \theta + \sin \theta)(1 - r^2)\end{pmatrix}$
$= (1 - r^2) \begin{bmatrix} r\cos \theta & r\sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \begin{pmatrix} \cos \theta - \sin \theta \\ \cos \theta + \sin \theta \end{pmatrix} = (1 - r^2) \begin{pmatrix} r \\ 1 \end{pmatrix}; \tag{10}$
$\dot r = r(1 - r^2); \tag{11}$
$\dot \theta = 1 - r^2. \tag{12}$
Desde
$x_0^2 + y_0^2 > 0, \tag{13}$
tenemos
$r_0^2 = x_0^2 + y_0^2 > 0 \Longrightarrow r_0 > 0; \tag{14}$
por (11),
$0 < r < 1 \Longrightarrow \dot r > 0; \tag{15}$
$1 < r \Longrightarrow \dot r < 0; \tag{16}$
$r = 1 \Longrightarrow \dot r = 0; \tag{17}$
es relativamente fácil ver que (14)-(17) en concierto implica que
$\displaystyle \lim_{t \to \infty} r = 1; \tag{18}$
también, (11) y (12), junto rendimiento
$r \ne 0 \Longrightarrow \dot{(\ln r)} = \dfrac{\dot r}{r} = 1 - r^2 = \dot \theta, \tag{19}$
de donde, integrando más de $t$,
$\ln r - \ln r_0 = \theta - \theta_0, \tag{20}$
o
$\theta = \ln r - \ln r_0 + \theta_0, \tag{21}$
y así, a través de (18)
$\displaystyle \lim_{t \to \infty} \theta = \lim_{t \to \infty} \ln r - \ln r_0 + \theta_0 = \theta_0 - \ln r_0; \tag{22}$
finalmente,
$\displaystyle \lim_{t \to \infty} x(t) = \lim_{t \to \infty} ( r \cos \theta) = (\lim_{t \to \infty} r)( \lim_{t \to \infty} \cos \theta) = \cos (\theta_0 - \ln r_0). \tag{23}$