Dada cualquier función suave $f(x)$ definido a lo largo del $(1 - \epsilon,\infty)$, podemos reescribir
su suma parcial sobre $\mathbb{Z}_{+}$ como una de Riemann-Stieltjes integral:
$$\sum_{k=1}^n f(k) = \int_{1^{-}}^{n^{+}} f(x) d\lfloor x \rfloor \tag{*1}$$
Deje $\;B_n(x)\;$ $n^{th}$ Bernoulli polinomio y $\;P_n(x) = B_n(\{x\})\;$, sabemos
$$\lfloor x \rfloor = x - \{ x \} = x - \frac12 - B_1(\{x\}) = x - \frac12 - P_n(x)$$
y $P_n$ satisface la relación $P'_n(x) = n P_{n-1}(x)$$n > 1$.
Con ellas, se puede transformar RHS de $(*1)$ por una repetición de la integración por partes.
$$\begin{align}
\sum_{k=1}^n f(k)
= & \int_{1}^{n} f(x) dx - \int_{1^{-}}^{n+} f(x) dP_1(x)\\
= & \int_{1}^{n} f(x) dx
- \bigg[ f(x) P_1(x) \bigg]_{1^{-}}^{n^{+}} + \frac12 \int_1^n f'(x) dP_2(x)\\
= & \int_{1}^n f(x) dx
- \bigg[ f(x) P_1(x) - \frac12 f'(x) P_2(x) \bigg]_{1^{-}}^{n^{+}} - \frac{1}{3!} \int_1^n f''(x) dP_3(x)\\
\vdots &\\
= & \int_{1}^n f(x) dx
+ \underbrace{\frac12 (f(1) + f(n) ) + \sum_{k=1}^{p}\frac{B_{2k}}{(2k)!}\bigg[f^{(2k-1)}(x)\bigg]_1^n}_{C_{n,p}}
+ R_{n,p}
\end{align}
$$
La última línea es la famosa de Euler-Maclaurin de la fórmula y el término de error $R_{n,p}$ tiene la forma:
$$
R_{n,p}
= -\frac{1}{(2p)!} \int_1^n f^{(2)}(x) P_{2}(x) dx
= \frac{1}{(2p+1)!} \int_1^n f^{(2p+1)}(x) P_{2p+1}(x) dx
\etiqueta{*2}
$$
Para nuestro problema, $f(x) = \cos\sqrt{x}$. Sólo tenemos que mantener la expansión hasta el $p = 1$. Tenemos
$$\begin{align}
\int_1^n f(x) dx &= 2\sqrt{n} \sin\sqrt{n} +2 \cos\sqrt{n}- 2(\sin 1 + \cos 1)\\
C_{n,1} &= \frac12(\cos\sqrt{n} + \cos 1) -\frac{1}{24}\left(
\frac{\sin\sqrt{n}}{\sqrt{n}} - \sin 1\right)
\end{align}$$
Para el término de error $R_{n,1}$, vamos a utilizar la segunda forma en $(*2)$.
Deje $K = \sup\limits_{0 \le x \le 1}|P_3(x)| = \frac{1}{12\sqrt{3}}$, tenemos
$$\begin{align}|R_{n,1}|
&= \frac{1}{3!}\left|\int_1^n \left(
\frac{\sin\sqrt{x}}{8 x^{3/2}}
+ \frac{3\cos\sqrt{x}}{8 x^2}
-\frac{3\sin\sqrt{x}}{8 x^{5/2}}
\right) P_3(x) dx\right|\\
&\le \frac{K}{6}\int_1^n \left(
\frac{1}{8 x^{3/2}}
+ \frac{3}{8 x^2}
+\frac{3}{8 x^{5/2}}
\right) dx\\
&\le \frac{K}{6}\int_1^\infty \left(
\frac{1}{8 x^{3/2}}
+ \frac{3}{8 x^2}
+\frac{3}{8 x^{5/2}}
\right) dx\\
&= \frac{7K}{48} = \frac{7}{576\sqrt{3}} \approx 0.0070164
\end{align}
$$
Así que para todos los $n$, tenemos
$$\sum_{k=1}^n \cos\sqrt{k} =
2\sqrt{n} \sin\sqrt{n} + \frac{5}{2} \cos\sqrt{n}- \frac{47 \sen 1 + 36 \cos 1}{24} + \epsilon_n$$
con el término de error $|\epsilon_n| \le \frac{1}{24\sqrt{n}} + |R_{n,1}| \le 0.05$.
A partir de esto, vamos a ver, por un gran $n$, el comportamiento de las sumas parciales $\sum\limits_{k=1}^n \cos\sqrt{k}$ están dominados por el plazo $2\sqrt{n}\sin\sqrt{n}$. Simplemente oscilan entre el $\pm 2\sqrt{n}$ $n$ aumenta y, por tanto, ilimitado.