Creo que sus datos pueden ser vistos como datos multinivel, donde las mediciones están anidadas en los sujetos. En el 20% de los casos faltan las mediciones en 2-3 puntos temporales. El ajuste de máxima verosimilitud (ML) de un modelo de efectos mixtos asumirá que estas observaciones faltan al azar (MAR).
Dicho esto, si se ajusta un modelo multinivel, cada sujeto tendrá su propio intercepto para permitir la hetorogeneidad en las puntuaciones iniciales en t=1. Además, yo incluiría una pendiente aleatoria del indicador o indicadores de tiempo para tener en cuenta las diferencias entre sujetos en el cambio a lo largo del tiempo.
En cuanto a la cantidad de información que falta: el 20% de observaciones que faltan parece lo suficientemente justo para permitir el ajuste de ML. Si quiere estar realmente seguro de que los datos que faltan no causan ningún problema, podría utilizar un modelo de imputación múltiple (MI) antes de la estimación del modelo multinivel. También la imputación múltiple asumirá que los datos son MAR, pero la naturaleza bayesiana del método puede ser más fácil de acomodar en BUGS. Una alternativa en R es el paquete mice
.
Sin embargo, si sólo tiene datos que faltan en el dV la gran ventaja de la modelización multinivel es que su algoritmo ML permite los datos que faltan en el ajuste del modelo. Si el algoritmo ML no tiene problemas de convergencia, las estimaciones de MI y ML deberían ser muy similares.