Similar a este problema, estoy tratando de encontrar: $$f(n)=\frac1{n^3}\sum_{\substack{a=1\\(a,n)=1}}^{n}a^3$$ Del mismo modo que yo hice esto: $$\begin{align}g(n)&=\sum_{d|n}f(d)\\ &=\color{gray}{\text{(see previous question)}}\\ &=\sum_{d|n}\sum_{d'|d}\mu(d')\frac{d'^3}{d^3}\sum_{m\le d/d'}m^3\\ &=\sum_{d|n}\sum_{d'|d}\mu(d')\frac{d'^3}{d^3}\left[\frac{\frac{d^2}{d'^2}\left(\frac{d}{d'}+1\right)^2}{4}\right]\\ &=\frac14\sum_{d|n}\sum_{d'|d}\left(d\frac{\mu(d')}{d'}+2\mu(d')+\frac1dd'\mu(d')\right)\\ &=\sum_{d|n}\left(\phi(d)+2\nu(d)+\frac1d\sum_{d'|d}d'\mu(d')\right)\\ &=n+2+\sum_{d|n}\frac1d\sum_{d'|d}d'\mu(d') \end{align}$$
Ahora, ¿cómo resolver $$\sum_{d|n}\frac1d\sum_{d'|d}d'\mu(d')$$