Queremos mostrar que $X_t = tW_t - \int_0^t W_s \mathrm{d}s$ es una martingala.
Deje $r\leq t$
$$ \mathbb{E}[X_t\ | \ \mathcal{F}_r]= \mathbb{E}[tW_t\ |\ \mathcal{F}_r] - \mathbb{E}\left[\int_0^t W_s \mathrm{d}s \ | \ \mathcal{F}_r\right]. $$
Como notado $$\mathbb{E}[tW_t\ |\ \mathcal{F}_r] = \mathbb{E}[t(W_t-W_r) + tW_r\ |\ \mathcal{F}_r] = t \underbrace{\mathbb{E}[W_t - W_r \ | \mathcal{F}_r]}_{=\mathbb{E}[W_t-W_r] = 0} + t \underbrace{\mathbb{E}[W_r\ |\ \mathcal{F}_r]}_{=W_r} = tW_r,$$
ahora tomamos la segunda parte, que es,
$$\begin{align*}\mathbb{E}\left[\int_0^t W_s \mathrm{d}s \ | \ \mathcal{F}_r\right] =& \mathbb{E}\left[\int_0^r W_s \mathrm{d}s + \int_r^t W_s \mathrm{d}s \ | \ \mathcal{F}_r\right] \\=& \mathbb{E}\left[\int_0^r W_s \mathrm{d}s \ | \ \mathcal{F}_r\right]+ \mathbb{E}\left[\int_r^t W_s \mathrm{d}s \ | \ \mathcal{F}_r\right] \\ =& \int_0^rW_s \mathrm{d} s + \mathbb{E}\left[\int_r^t W_r + (W_s-W_r) \mathrm{d}s \ | \ \mathcal{F}_r\right] \\ =& \int_0^r W_s \mathrm{d}s + \mathbb{E}\left[\int_r^t W_r \mathrm{d}s \ | \ \mathcal{F}_r \right] + \mathbb{E}\left[\int_r^t (W_s-W_r) \mathrm{d}s \ | \ \mathcal{F}_r \right]
\\ =& \int_0^r W_s \mathrm{d}s + \mathbb{E}\left[(t-r)W_r \ | \ \mathcal{F}_r \right] + \mathbb{E}\left[\int_r^t (W_s-W_r) \mathrm{d}s \ | \ \mathcal{F}_r \right] \\ =& \int_0^r W_s \mathrm{d}s + (t-r)W_r + \int_r^t \underbrace{\mathbb{E}[W_s - W_r | \mathcal{F}_r]}_{=0} \mathrm{d}s = \\ =& (t-r)W_r + \int_0^r W_s \mathrm{d}s
.\end{align*}$$
He utilizado el hecho de que $ \mathbb{E}\left[\int_r^t (W_s-W_r) \mathrm{d}s \ | \ \mathcal{F}_r\right]=\int_r^t \mathbb{E}[W_s-W_r | \mathcal{F}_r] \mathrm{d}s$ a través del teorema de Fubini para más detalle sobre esto que usted puede desear para ver este enlace.
Por lo tanto,
$$\mathbb{E}[X_t\ | \ \mathcal{F}_r] = tW_r - (t-r)W_r - \int_0^r W_s \mathrm{d}s =rW_r - \int_0^r W_s \mathrm{d}s = X_r. $$