A partir de $$ \eqalign{ & S = \sum\limits_{k = 0}^\infty { \binom{3k}{k}{{9k^2 - 3k - 1} \over {\left( {3k - 1} \right)\left( {3k - 2} \right)}}\left( {{2 \over {27}}} \right)^{\,k} } = \cr & = \sum\limits_{k = 0}^\infty { \binom{3k}{k} \left( {1 + {1 \over {\left( {3k - 1} \right)}} + {1 \over {\left( {3k - 2} \right)}}} \right)\left( {{2 \over {27}}} \right)^{\,k} } \cr} $$ tenemos que $$ \binom{3k}{k} = {{\Gamma \left( {3k + 1} \right)} \over {\Gamma \left( {2k + 1} \right)}}{1 \over {k!}} $$
Utilización de la $n$ -fórmula de multiplicación de la función Gamma $$ \Gamma \left( {n\,z + 1} \right) = \Gamma \left( {n\,\left( {z + 1/n} \right)} \right)\quad = {{n^{\,n\,z + 1/2} } \over {\left( {2\,\pi } \right)^{\left( {n - 1} \right)/2} }}\prod\limits_{1\, \le \,j\, \le \,n} {\Gamma \left( {z + {j \over n}} \right)} $$ obtenemos $$ \eqalign{ & {{\Gamma \left( {3\,k + 1} \right)} \over {\Gamma \left( {2\,k + 1} \right)}}\quad = {{3^{\,3\,k + 1/2} } \over {2^{\,2\,k + 1/2} \sqrt {2\,\pi } ^\, }}{{\Gamma \left( {k + {1 \over 3}} \right)\Gamma \left( {k + {2 \over 3}} \right) \Gamma \left( {k + 1} \right)} \over {\Gamma \left( {k + {1 \over 2}} \right)\Gamma \left( {k + 1} \right)}} = \cr & = \sqrt {{3 \over {4\pi }}} {{\Gamma \left( {k + {1 \over 3}} \right)\Gamma \left( {k + {2 \over 3}} \right)} \over {\Gamma \left( {k + {1 \over 2}} \right)}}\left( {{27 \over 4}} \right)^{\,k} \cr & {{\Gamma \left( {3\,k + 1} \right)} \over {\Gamma \left( {2\,k + 1} \right)\left( {3k - 1} \right)}} = \sqrt {{3 \over {4\pi }}} {{\Gamma \left( {k + {1 \over 3}} \right)\Gamma \left( {k + {2 \over 3}} \right)} \over {3\Gamma \left( {k + {1 \over 2}} \right)\left( {k - 1/3} \right)}}\left( {{27 \over 4}} \right)^{\,k} = \cr & = \sqrt {{3 \over {4\pi }}} {1 \over 3}{{\Gamma \left( {k + {1 \over 3}} \right)\Gamma \left( {k - {1 \over 3}} \right)} \over {\Gamma \left( {k + {1 \over 2}} \right)}}\left( {{27 \over 4}} \right)^{\,k} \cr & {{\Gamma \left( {3\,k + 1} \right)} \over {\Gamma \left( {2\,k + 1} \right)\left( {3k - 2} \right)}} = \sqrt {{3 \over {4\pi }}} {{\Gamma \left( {k + {1 \over 3}} \right)\Gamma \left( {k + {2 \over 3}} \right)} \over {3\Gamma \left( {k + {1 \over 2}} \right)\left( {k - 2/3} \right)}}\left( {{27 \over 4}} \right)^{\,k} = \cr & = \sqrt {{3 \over {4\pi }}} {1 \over 3}{{\Gamma \left( {k - {2 \over 3}} \right)\Gamma \left( {k + {2 \over 3}} \right)} \over {\Gamma \left( {k + {1 \over 2}} \right)}}\left( {{27 \over 4}} \right)^{\,k} \cr} $$
Así que $$ \eqalign{ & S = \cr & = \sum\limits_{k = 0}^\infty {\binom{3k}{k} \left( {1 + {1 \over {\left( {3k - 1} \right)}} + {1 \over {\left( {3k - 2} \right)}}} \right)\left( {{2 \over {27}}} \right)^{\,k} } = \cr & = {1 \over 2}\sqrt {{1 \over {3\pi }}} \sum\limits_{k = 0}^\infty { \left( {3{{\Gamma \left( {k + {1 \over 3}} \right)\Gamma \left( {k + {2 \over 3}} \right)} \over {\Gamma \left( {k + {1 \over 2}} \right)}} + {{\Gamma \left( {k + {1 \over 3}} \right)\Gamma \left( {k - {1 \over 3}} \right)} \over {\Gamma \left( {k + {1 \over 2}} \right)}} + {{\Gamma \left( {k - {2 \over 3}} \right)\Gamma \left( {k + {2 \over 3}} \right)} \over {\Gamma \left( {k + {1 \over 2}} \right)}}} \right){{\left( {1/2} \right)^{\,k} } \over {k!}}} \cr} $$
Utilizando la función hipergeométrica que se convierte en $$ \eqalign{ & S = \cr & = {1 \over 2}\sqrt {{1 \over {3\pi }}} \left( \matrix{ 3{{\Gamma \left( {1/3} \right)\Gamma \left( {2/3} \right)} \over {\Gamma \left( {1/2} \right)}}{}_2F_1 \left( {\left. {\matrix{ {1/3,\;2/3} \cr {1/2} \cr } \,} \right|\;{1 \over 2}} \right) + \hfill \cr + {{\Gamma \left( {1/3} \right)\Gamma \left( { - 1/3} \right)} \over {\Gamma \left( {1/2} \right)}}{}_2F_1 \left( {\left. {\matrix{ {1/3,\; - 1/3} \cr {1/2} \cr } \,} \right|\;{1 \over 2}} \right) + \hfill \cr + {{\Gamma \left( {2/3} \right)\Gamma \left( { - 2/3} \right)} \over {\Gamma \left( {1/2} \right)}}{}_2F_1 \left( {\left. {\matrix{ {2/3,\; - 2/3} \cr {1/2} \cr } \,} \right|\;{1 \over 2}} \right) \hfill \cr} \right) = \cr & = {}_2F_1 \left( {\left. {\matrix{ {1/3,\;2/3} \cr {1/2} \cr } \,} \right|\;{1 \over 2}} \right) - {}_2F_1 \left( {\left. {\matrix{ {1/3,\; - 1/3} \cr {1/2} \cr } \,} \right|\;{1 \over 2}} \right) - {1 \over 2}{}_2F_1 \left( {\left. {\matrix{ {2/3,\; - 2/3} \cr {1/2} \cr } \,} \right|\;{1 \over 2}} \right) \cr} $$
Dado que el hipergeométrico para la variable $z=1/2$ sigue las siguientes fórmulas (véase, por ejemplo este enlace ) $$ \eqalign{ & {}_2F_1 \left( {\left. {\matrix{ {a,\;b} \cr {{{a + b} \over 2}} \cr } \,} \right|\;{1 \over 2}} \right) = \sqrt \pi \;\Gamma \left( {{{a + b} \over 2}} \right)\left( {{1 \over {\Gamma \left( {{{a + 1} \over 2}} \right)\Gamma \left( {{b \over 2}} \right)}} + {1 \over {\Gamma \left( {{a \over 2}} \right)\Gamma \left( {{{b + 1} \over 2}} \right)}}} \right) \cr & {}_2F_1 \left( {\left. {\matrix{ {a,\;b} \cr {{{a + b + 1} \over 2}} \cr } \,} \right|\;{1 \over 2}} \right) = \sqrt \pi \;\Gamma \left( {{{a + b + 1} \over 2}} \right){1 \over {\Gamma \left( {{{a + 1} \over 2}} \right)\Gamma \left( {{{b + 1} \over 2}} \right)}} \cr} $$ entonces $$ \eqalign{ & {}_2F_1 \left( {\left. {\matrix{ {1/3,\;2/3} \cr {1/2} \cr } \,} \right|\;{1 \over 2}} \right) = \pi \left( {{1 \over {\Gamma \left( {2/3} \right)\Gamma \left( {1/3} \right)}} + {1 \over {\Gamma \left( {1/6} \right)\Gamma \left( {1 - 1/6} \right)}}} \right) = \cr & = \left( {{3 \over {2\sqrt 3 }} + {1 \over 2}} \right) = {{\sqrt 3 + 1} \over 2} \cr & {}_2F_1 \left( {\left. {\matrix{ {1/3,\; - 1/3} \cr {1/2} \cr } \,} \right|\;{1 \over 2}} \right) = \pi {1 \over {\Gamma \left( {2/3} \right)\Gamma \left( {1/3} \right)}} = {{\sqrt 3 } \over 2} \cr & {}_2F_1 \left( {\left. {\matrix{ {2/3,\; - 2/3} \cr {1/2} \cr } \,} \right|\;{1 \over 2}} \right) = \pi {1 \over {\Gamma \left( {1 - {1 \over 6}} \right)\Gamma \left( {{1 \over 6}} \right)}} = {1 \over 2} \cr} $$
Y $S= 1/4$ sigue.