$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove armada]{\displaystyle{#1}}\,}
\newcommand{\llaves}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
Con $\ds{\pars{~\Re\pars{z - 1} > - 1\ \mbox{y}\ \Re\pars{z - 1} < 0~} \implica
\bbx{\ds{0 < \Re\pars{z} < 1}}}$:
\begin{align}
\int_{0}^{\infty}{v^{z - 1} \over v + 1}\,\dd v &
\,\,\,\stackrel{t\ =\ 1/\pars{v + 1}}{=}\,\,\,
\int_{1}^{0}t\,\pars{{1 \over t} - 1}^{z - 1}\pars{-\,{1 \over t^{2}}}\dd t =
\int_{0}^{1}t^{-z}\,\pars{1 - t}^{z - 1}\,\dd t
\\[5mm] & = {\Gamma\pars{-z + 1}\Gamma\pars{z} \over \Gamma\pars{1}} =
\bbx{\ds{\pi \over \sin\pars{\pi z}}}
\end{align}