$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove armada]{\displaystyle{#1}}\,}
\newcommand{\llaves}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
&\bbox[10px,#ffd]{\left.\vphantom{\LARGE A}%
\mrm{Li}_{2}\pars{\expo{-2\ic x}} +
\mrm{Li}_{2}\pars{\expo{2\ic x}}\,\right\vert_{\ 0\ <\ x\ <\ \pi}} =
\mrm{Li}_{2}\pars{\exp\pars{2\pi\ic\,{x \over \pi}}} +
\mrm{Li}_{2}\pars{\exp\pars{-2\pi\ic\,{x \over \pi}}}
\\[5mm] = &\
-\,{\pars{2\pi\ic}^{2} \over 2!}\,\mathrm{B}_{2}\pars{x \over \pi}
\end{align}
que es Jonqui$\grave{\mrm{e}}$re la Inversión de la Fórmula. $\ds{\mrm{B}_{n}}$ es un Polinomio de Bernoulli.
Tenga en cuenta que $\ds{\mrm{B}_{2}\pars{z} = z^{2} - z + {1 \over 6}}$ tales que
\begin{align}
&\bbox[10px,#ffd]{\left.\vphantom{\LARGE A}%
\mrm{Li}_{2}\pars{\expo{-2\ic x}} +
\mrm{Li}_{2}\pars{\expo{2\ic x}}\,\right\vert_{\ 0\ <\ x\ <\ \pi}} =
2\pi^{2}\bracks{\pars{x \over \pi}^{2} - {x \over \pi} + {1 \over 6}}
\\[5mm] = &\
\bbx{2x^{2} - 2\pi x + {\pi^{2} \over 3}}
\end{align}