deje $H_{2\times 2}$ es positiva definida la matriz,
demostrar que:
Existen $p>0$, $$(x,y)H\binom{x}{y}\ge p(x^2+y^2)$$
Yo: vamos a $$H=\begin{bmatrix} a_{1}&a_{2}\\ b_{1}&b_{2} \end{bmatrix}$$ y tal $$|H|=a_{1}b_{2}-a_{2}b_{1}>0$$ así $$(x,y)H\binom{x}{y}=(a_{1}x+b_{1}y,a_{2}x+b_{2}y)\binom{x}{y}=a_{1}x^2+b_{2}y^2+(a_{2}+b_{1})xy$$
entonces, ¿Cómo encontrar esta $p$, $$a_{1}x^2+b_{2}y^2+(a_{2}+b_{1})xy\ge p(x^2+y^2)$$
así que lo dejé $t=\dfrac{x}{y}$,luego $$p\le\dfrac{a_{1}t^2+b_{2}+(a_{2}+b_{1})t}{t^2+1}=y$$ entonces tenemos $$(a_{1}-y)t^2+(a_{2}+b_{1})t+b_{2}-y=0$$ así $$\Delta=(a_{2}+b_{1})^2-4(a_{1}-y)(b_{2}-y)\ge 0$$ $$\Longrightarrow \dfrac{a_{1}+b_{2}}{2}-\sqrt{\dfrac{(a_{2}+b_{1})^2}{4}+\dfrac{(a_{1}-b_{2})^2}{4}}\le y\le \dfrac{a_{1}+b_{2}}{2}+\sqrt{\dfrac{(a_{2}+b_{1})^2}{4}+\dfrac{(a_{1}-b_{2})^2}{4}}$$ por lo tanto,Hay existir $p \in[I_{1},I_{2}]$ donde $$I_{1}= \dfrac{a_{1}+b_{2}}{2}-\sqrt{\dfrac{(a_{2}+b_{1})^2}{4}+\dfrac{(a_{1}-b_{2})^2}{4}},I_{2}= \dfrac{a_{1}+b_{2}}{2}+\sqrt{\dfrac{(a_{2}+b_{1})^2}{4}+\dfrac{(a_{1}-b_{2})^2}{4}}$$