4 votos

Triple integral sobre una esfera con el parámetro $2n$?

Necesito integración $x^{2n}+y^{2n}+z^{2n}$ a través de una esfera de ecuación de $x²+y²+z²=1$.

He pensado en cambiar las coordenadas cartesianas a esféricas, pero no sé cómo lidiar con los integrantes en este caso. O tal vez debo dividir la integral en tres partes? O incluso utilizar el campo de vectores $r=(x,y,z)$, pero entonces, ¿cómo?

Cualquier ayuda sería increíble que hay.

Gracias.

1voto

Felix Marin Puntos 32763

$\newcommand{\+}{^{\daga}}% \newcommand{\ángulos}[1]{\left\langle #1 \right\rangle}% \newcommand{\llaves}[1]{\left\lbrace #1 \right\rbrace}% \newcommand{\bracks}[1]{\left\lbrack #1 \right\rbrack}% \newcommand{\ceil}[1]{\,\left\lceil #1 \right\rceil\,}% \newcommand{\dd}{{\rm d}}% \newcommand{\down}{\downarrow}% \newcommand{\ds}[1]{\displaystyle{#1}}% \newcommand{\equalby}[1]{{#1 \cima {= \cima \vphantom{\enorme}}}}% \newcommand{\expo}[1]{\,{\rm e}^{#1}\,}% \newcommand{\fermi}{\,{\rm f}}% \newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}% \newcommand{\mitad}{{1 \over 2}}% \newcommand{\ic}{{\rm i}}% \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow}% \newcommand{\isdiv}{\,\left.\a la derecha\vert\,}% \newcommand{\cy}[1]{\left\vert #1\right\rangle}% \newcommand{\ol}[1]{\overline{#1}}% \newcommand{\pars}[1]{\left( #1 \right)}% \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}} \newcommand{\pp}{{\cal P}}% \newcommand{\raíz}[2][]{\,\sqrt[#1]{\,#2\,}\,}% \newcommand{\sech}{\,{\rm sech}}% \newcommand{\sgn}{\,{\rm sgn}}% \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}}% \newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}$ $\large\mbox{If}\quad {\tt n = 0,1,2,\ldots}$: \begin{align} &\color{#00f}{\large\iiint_{x^{2} + y^{2} + z^{2} < 1} \pars{x^{2n} + y^{2n} + z^{2n}}\,\dd x\,\dd y\,\dd z} =3\iiint_{x^{2} + y^{2} + z^{2} < 1} z^{2n}\,\dd x\,\dd y\,\dd z \\[3mm]&=3\int_{0}^{1}r^{2n + 2}\,\dd r\int_{0}^{2\pi}\dd\phi \int_{0}^{\pi}\cos^{2n}\pars{\theta}\sin\pars{\theta}\,\dd\theta ={6\pi \over 2n + 3}\int_{-1}^{1}\xi^{2n}\,\dd\xi \\[3mm]&=\color{#00f}{\large{12\pi \over \pars{n + 1}\pars{2n + 3}}} \end{align}

0voto

Dutta Puntos 3026

Deje $f(x,y,z) = x^{2n} + y^{2n} + z^{2n}$

Ver $\Delta . f(x,y,z) = i 2n x^{2n -1} + j 2ny^{2n-1} + k2nz^{2n-1} = A$ (Vamos a escribir abajo)

Su $S(x,y,z) = x^{2} + y^{2} + z^{2}$

Por lo $\Delta S = 2xi + 2yj + 2zk$

Únete vector normal a la superficie dada es $n = \frac{2xi + 2yj+ 2zk}{\sqrt{4x^2 + 4y^2 + 4z^2}} = \frac{xi + yj+ zk}{r}$

Ahora ve $A.n = \frac{2n}{r}f(x,y,z)$. Calcular, es muy fácil.

Por lo tanto $f = \frac{r}{2n} A.n$.

Ahora intrgrate.

$$\int \int_S f.dS = \int \int \int_V \Delta. A dV = 0$$

como divergencia (Gradiente $\phi$) = 0, para un escalador de valores de la función y aquí $\phi = f$

Por favor, edite la composición de la respuesta.

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X