Si $\tan 2\alpha\cdot\tan \alpha = 1$ , entonces, ¿qué es $\alpha$ ?
Probé dos métodos pero obtuve dos respuestas diferentes.
Método 1:
$$ \begin{align} \tan 2\alpha\cdot\tan \alpha = 1 &\implies \frac{2\tan \alpha}{1 - \tan ^2 \alpha}\;\tan \alpha = 1 \tag{1a}\\[6pt] &\implies 2\tan ^2\alpha = 1 - \tan ^2\alpha \tag{1b}\\[6pt] &\implies \tan ^2 \alpha = \frac{1}{3} \tag{1c}\\[6pt] &\implies \tan \alpha = \pm\frac{1}{\sqrt 3} \tag{1d}\\[6pt] &\implies \tan \alpha = \tan\left(\pm\frac{\pi}{6}\right) \tag{1e}\\[6pt] &\implies \alpha = n\pi \pm \frac{\pi}{6} \;\text{where}\; n \in \mathbb{Z} \tag{1f} \end {align} $$
Método 2: $$ \begin{align} \tan 2\alpha \cdot \tan \alpha = 1 &\implies \tan 2\alpha = \frac{1}{\tan \alpha} \tag{2a}\\[6pt] &\implies \tan 2\alpha = \cot \alpha \tag{2b}\\[6pt] &\implies \tan 2\alpha = \tan\left(\frac{\pi}{2} - \alpha\right) \tag{2c}\\[6pt] &\implies 2\alpha = n\pi + \frac{\pi}{2} - \alpha \text{?} \tag{2d}\\[6pt] &\implies \alpha = \frac{1}{3}\left(n\pi + \frac{\pi}{2}\right)\;\text{where}\; n \in \mathbb{Z} \tag{2e} \end {align} $$
¿Cuál es la correcta? ¿Hay algún error en las soluciones anteriores?