Simplemente estoy tratando de volver a calcular con dnorm() el logaritmo de la probabilidad proporcionados por el logLik función de un modelo lm (R).
Funciona casi a la perfección) por la gran cantidad de datos (por ejemplo, n=1000) :
> n <- 1000
> x <- 1:n
> set.seed(1)
> y <- 10 + 2*x + rnorm(n, 0, 2)
> mod <- glm(y ~ x, family = gaussian)
> logLik(mod)
'log Lik.' -2145.562 (df=3)
> sigma <- sqrt(summary(mod)$dispersion)
> sum(log(dnorm(x = y, mean = predict(mod), sd = sigma)))
[1] -2145.563
> sum(log(dnorm(x = resid(mod), mean = 0, sd = sigma)))
[1] -2145.563
pero para pequeños conjuntos de datos hay claras diferencias :
> n <- 5
> x <- 1:n
> set.seed(1)
> y <- 10 + 2*x + rnorm(n, 0, 2)
>
> mod <- glm(y ~ x, family = gaussian)
> logLik(mod)
'log Lik.' -8.915768 (df=3)
> sigma <- sqrt(summary(mod)$dispersion)
> sum(log(dnorm(x = y, mean = predict(mod), sd = sigma)))
[1] -9.192832
> sum(log(dnorm(x = resid(mod), mean = 0, sd = sigma)))
[1] -9.192832
Porque de pequeño conjunto de datos efecto pensé que podría ser debido a las diferencias en las estimaciones de la varianza residual entre la película y el glm pero el uso de lm proporciona el mismo resultado que el glm :
> modlm <- lm(y ~ x)
> logLik(modlm)
'log Lik.' -8.915768 (df=3)
>
> sigma <- summary(modlm)$sigma
> sum(log(dnorm(x = y, mean = predict(modlm), sd = sigma)))
[1] -9.192832
> sum(log(dnorm(x = resid(modlm), mean = 0, sd = sigma)))
[1] -9.192832
Donde estoy equivocado ?