En primer lugar, tenemos que $$\left\{ \begin{array}{rcr} |x| & = & x, \ \text{if} \ x\geq 0 \\ |x| & = & -x, \ \text{if} \ x<0 \\ \end{array} \right.$$
Así, esto significa que $$\left\{ \begin{array}{rcr} |x^2-2x| & = & 1, \ \text{if} \ x\geq 0 \\ |x^2+2x| & = & 1, \ \text{if} \ x<0 \\ \end{array} \right.$$
Para la primera ecuación, tenemos
$$|x^2-2x|\Rightarrow\left\{\begin{array}{rcr} x^2-2x & = & 1, \ \text{if} \ x^2\geq 2x \\ x^2-2x & = & -1, \ \text{if} \ x^2<2x \\ \end{array} \right.$$
y para la segunda ecuación, tenemos
$$|x^2+2x|\Rightarrow\left\{\begin{array}{rcr} x^2+2x & = & 1, \ \text{if} \ x^2+2x\geq 0 \\ x^2+2x & = & -1, \ \text{if} \ x^2+2x<0 \\ \end{array} \right.$$
La solución para todas estas ecuaciones, obtenemos
$$\left\{\begin{array}{rcr} x^2-2x & = 1 \Rightarrow& x_1=1+\sqrt{2} \ \ \text{and} \ \ x_2=1-\sqrt{2}\\ x^2-2x & =-1 \Rightarrow& x_3=1 \ \ \text{and} \ \ x_4=1\\ x^2+2x & = 1 \Rightarrow& x_5=-1-\sqrt{2} \ \ \text{and} \ \ x_6=-1+\sqrt{2}\\ x^2+2x & =-1 \Rightarrow& x_7=-1 \ \ \text{and} \ \ x_8=-1 \end{array} \right.$$
Así que tenemos las raíces $$\begin{array}{lcl} x_1 = & 1+\sqrt{2} \\ x_2 = & 1-\sqrt{2} \\ x_3 = & -1+\sqrt{2} \\ x_4 = & -1-\sqrt{2} \\ x_5 = & 1 \\ x_6 = & -1 \end{array}$$
Pero según el libro, la respuesta es
\begin{array}{lcl} x_1 & = & 1+\sqrt{2} \\ x_4 & = & -1-\sqrt{2} \\ x_5 & = & 1 \\ x_6 & = & -1 \end{array}
Lo que sucedió a$x_2$$x_3$? Cualquier otra manera de resolver esta ecuación más rápido?