Vamos a definir la matriz de valores de polinomio
$$
p(t) = (A+tB)^n = \sum_{k=0}^n C_k t^k.
$$ We see that each $(i,j)$-th component $p(t)_{ij}$ of $p(t)$ is a polynomial in $t$ of degree at most $n$. By the assumption, $p(t)_{ij}=0$ has $n+el 1$ distinct roots $c_1,c_2,\ldots, c_{n+1}$ on the underlying field $\mathbb{F}$. (This is why: if $n\times n$ matrix $T$ is nilpotent, the it holds $T^k=O$ for some $k\le n$ and hence $T^n=O$. Thus, by the assumption, $p(c_k) = O$ for all $k=1,2,\ldots, n+1$.) This means $p(t)_{ij} \equiv 0$ and it follows that $p(t) \equiv O$.
Dado que el coeficiente $C_n$ de $t^n$ es $B^n$, se deduce que el $B^n=O$.